Redis中如何实现限流策略

网友投稿 436 2023-12-04

Redis中如何实现限流策略

这篇文章将为大家详细讲解有关Redis中如何实现限流策略,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

一、简单的限流

基本原理

Redis中如何实现限流策略

当系统处理能力有限,如何组织计划外的请求对系统施压。首先我们先看下一些简单的限流策略,防止暴力攻击。比如要对IP访问,没5s只能访问10次,超过进行拦截。

如上图,一般使用滑动窗口来统计区间时间内的访问次数。 使用 zset 记录 IP 访问次数,每个 IP 通过 key 保存下来,score 保存当前时间戳,value 唯一用时间戳或者UUID来实现

代码实现public class RedisLimiterTest {     private Jedis jedis;     public RedisLimiterTest(Jedis jedis) {         this.jedis = jedis;     }/**      * @param ipAddress Ip地址      * @paramperiod    特定的时间内,单位秒      *@param maxCount  最大允许的次数      * @return      */     public boolean isIpLimit(String ipAddress, int period, int maxCount) {         String key = String.format("ip:%s", ipAddress);         // 毫秒时间戳         longcurrentTimeMillis = System.currentTimeMillis();         Pipeline pipe = jedis.pipelined();// redis事务,保证原子性         pipe.multi();         // 存放数据,value 和 score 都使用毫秒时间戳         pipe.zadd(key, currentTimeMillis, ""+ UUID.randomUUID());// 移除窗口区间所有的元素         pipe.zremrangeByScore(key, 0, currentTimeMillis - period * 1000);         // 获取时间窗口内的行为数量         Response<Long> count = pipe.zcard(key);         // 设置 zset 过期时间,避免冷用户持续占用内存,这里宽限1spipe.expire(key, period +1);         // 提交事务         pipe.exec();         pipe.close();         // 比较数量是否超标         returncount.get() > maxCount;     }public static void main(String[] args) {         Jedis jedis = new Jedis("localhost"6379);         RedisLimiterTest limiter =new RedisLimiterTest(jedis);         for (int i = 1; i <= 20; i++) {             // 验证IP  10秒钟之内只能访问5次             boolean isLimit = limiter.isIpLimit("222.73.55.22"105);             System.out.println("访问第" + i + "次, 结果:" + (isLimit ? "限制访问" : "允许访问"));         }     } }

执行结果

访问第1次, 结果:允许访问 访问第2次, 结果:允许访问 访问第3次, 结果:允许访问 访问第4次, 结果:允许访问 访问第5次, 结果:允许访问 访问第6次, 结果:限制访问 访问第7次, 结果:限制访问 ... ...

缺点:要记录时间窗口所有的行为记录,量很大,比如,限定60s内不能超过100万次这种场景,不太适合这样限流,因为会消耗大量的储存空间。

二、漏斗限流

基本原理

漏斗的容量是限定的,如果满了,就装不进去了。

如果将漏嘴放开,水就会往下流,流走一部分之后,就又可以继续往里面灌水。

如果漏嘴流水的速率大于灌水的速率,那么漏斗永远都装不满。

如果漏嘴流水速率小于灌水的速率,那么一旦漏斗满了,灌水就需要暂停并等待漏斗腾空。

示例代码public class FunnelLimiterTest {     static class Funnel {         int capacity; // 漏斗容量         float leakingRate; // 漏嘴流水速率         int leftQuota; // 漏斗剩余空间         longleakingTs;// 上一次漏水时间         public Funnel(int capacity, float leakingRate) {             this.capacity = capacity;             this.leakingRate = leakingRate;this.leftQuota = capacity;             this.leakingTs = System.currentTimeMillis();         }void makeSpace() {             long nowTs = System.currentTimeMillis();             long deltaTs = nowTs - leakingTs; // 距离上一次漏水过去了多久             int deltaQuota = (int) (deltaTs * leakingRate); // 腾出的空间 = 时间*漏水速率             if (deltaQuota < 0) { // 间隔时间太长,整数数字过大溢出                 this.leftQuota = capacity;                 this.leakingTs = nowTs;                 return;             }             if(deltaQuota <1) { // 腾出空间太小 就等下次,最小单位是1                 return;             }             this.leftQuota += deltaQuota; // 漏斗剩余空间 = 漏斗剩余空间 + 腾出的空间             this.leakingTs = nowTs;             if (this.leftQuota > this.capacity) { // 剩余空间不得高于容量                 this.leftQuota = this.capacity;             }         }         boolean watering(int quota) {             makeSpace();if (this.leftQuota >= quota) { // 判断剩余空间是否足够                 this.leftQuota -= quota;                 return true;             }return false;         }     }     // 所有的漏斗     private Map<String, Funnel> funnels = new HashMap<>();     /**      * @param capacity    漏斗容量      * @paramleakingRate 漏嘴流水速率 quota/s      */     public boolean isIpLimit(String ipAddress, int capacity, float leakingRate) {         String key = String.format("ip:%s", ipAddress);         Funnel funnel = funnels.get(key);if (funnel == null) {             funnel = newFunnel(capacity, leakingRate);             funnels.put(key, funnel);         }return !funnel.watering(1); // 需要1个quota     }     public static void main(String[] args) throws Exception{         FunnelLimiterTest limiter = newFunnelLimiterTest();for (int i = 1; i <= 50; i++) {             // 每1s执行一次             Thread.sleep(1000);             // 漏斗容量是2 ,漏嘴流水速率是0.5每秒,             boolean isLimit = limiter.isIpLimit("222.73.55.22"2, (float)0.5/1000);             System.out.println("访问第" + i + "次, 结果:" + (isLimit ? "限制访问" : "允许访问"));         }     } }

执行结果

访问第1次, 结果:允许访问# 第1次,容量剩余2,执行后1 访问第2次, 结果:允许访问    # 第2次,容量剩余1,执行后0 访问第3次, 结果:允许访问    # 第3次,由于过了2s, 漏斗流水剩余1个空间,所以容量剩余1,执行后0 访问第4次, 结果:限制访问    # 第4次,过了1s, 剩余空间小于1, 容量剩余0 访问第5次, 结果:允许访问    # 第5次,由于过了2s, 漏斗流水剩余1个空间,所以容量剩余1,执行后0访问第6次, 结果:限制访问    # 以此类推... 访问第7次, 结果:允许访问 访问第8次, 结果:限制访问 访问第9次, 结果:允许访问 访问第10次, 结果:限制访问

我们观察 Funnel 对象的几个字段,我们发现可以将 Funnel 对象的内容按字段存储到一个 hash 结构中,灌水的时候将 hash 结构的字段取出来进行逻辑运算后,再将新值回填到 hash 结构中就完成了一次行为频度的检测

但是有个问题,我们无法保证整个过程的原子性。从 hash 结构中取值,然后在内存里运算,再回填到 hash 结构,这三个过程无法原子化,意味着需要进行适当的加锁控制。而一旦加锁,就意味着会有加锁失败,加锁失败就需要选择重试或者放弃。

如果重试的话,就会导致性能下降。如果放弃的话,就会影响用户体验。同时,代码的复杂度也跟着升高很多。这真是个艰难的选择,我们该如何解决这个问题呢?Redis-Cell 救星来了!

Redis-Cell

Redis 4.0 提供了一个限流 Redis 模块,它叫 redis-cell。该模块也使用了漏斗算法,并提供了原子的限流指令。 该模块只有1条指令cl.throttle,它的参数和返回值都略显复杂,接下来让我们来看看这个指令具体该如何使用。

> cl.throttle key:xxx 15 30 60 1

15 : 15 capacity 这是漏斗容量

30 60 : 30 operations / 60 seconds 这是漏水速率

1 : need 1 quota (可选参数,默认值也是1)

> cl.throttle laoqian:reply 15 30 60 1) (integer) 0   # 0 表示允许,1表示拒绝 2) (integer) 15  # 漏斗容量capacity 3) (integer) 14  # 漏斗剩余空间left_quota 4) (integer) -1  # 如果拒绝了,需要多长时间后再试(漏斗有空间了,单位秒) 5) (integer) 2   # 多长时间后,漏斗完全空出来(left_quota==capacity,单位秒)

在执行限流指令时,如果被拒绝了,就需要丢弃或重试。cl.throttle 指令考虑的非常周到,连重试时间都帮你算好了,直接取返回结果数组的第四个值进行 sleep 即可,如果不想阻塞线程,也可以异步定时任务来重试。

关于“Redis中如何实现限流策略”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Redis命令有哪些
下一篇:如何通过Restful API访问MongoDB
相关文章

 发表评论

暂时没有评论,来抢沙发吧~