15个初学者必看的基础SQL查询语句(基本的sql查询语句)

网友投稿 1015 2022-09-07

15个初学者必看的基础SQL查询语句(基本的sql查询语句)

15个初学者必看的基础SQL查询语句(基本的sql查询语句)

本文将分享15个初学者必看的基础SQL查询语句,都很基础,但是你不一定都会,所以好好看看吧。

1、创建表和数据插入SQL

我们在开始创建数据表和向表中插入演示数据之前,我想给大家解释一下实时数据表的设计理念,这样也许能帮助大家能更好的理解SQL查询。

在数据库设计中,有一条非常重要的规则就是要正确建立主键和外键的关系。

现在我们来创建几个餐厅订单管理的数据表,一共用到3张数据表,Item Master表、Order Master表和Order Detail表。

创建表:

创建Item Master表:

CREATE TABLE [dbo].[ItemMasters](

[Item_Code] [varchar](20) NOT NULL,

[Item_Name] [varchar](100) NOT NULL,

[Price] Int NOT NULL,

[TAX1] Int NOT NULL,

[Discount] Int NOT NULL,

[Description] [varchar](200) NOT NULL,

[IN_DATE] [datetime] NOT NULL,

[IN_USR_ID] [varchar](20) NOT NULL,

[UP_DATE] [datetime] NOT NULL,

[UP_USR_ID] [varchar](20) NOT NULL,

CONSTRAINT [PK_ItemMasters] PRIMARY KEY CLUSTERED

(

[Item_Code] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

向Item Master表插入数据:

INSERT INTO [ItemMasters] ([Item_Code],[Item_Name],[Price],[TAX1],[Discount],[Description],[IN_DATE]

,[IN_USR_ID],[UP_DATE],[UP_USR_ID])

VALUES

('Item001','Coke',55,1,0,'Coke which need to be cold',GETDATE(),'SHANU'

,GETDATE(),'SHANU')

INSERT INTO [ItemMasters] ([Item_Code],[Item_Name],[Price],[TAX1],[Discount],[Description],[IN_DATE]

,[IN_USR_ID],[UP_DATE],[UP_USR_ID])

VALUES

('Item002','Coffee',40,0,2,'Coffe Might be Hot or Cold user choice',GETDATE(),'SHANU'

,GETDATE(),'SHANU')

INSERT INTO [ItemMasters] ([Item_Code],[Item_Name],[Price],[TAX1],[Discount],[Description],[IN_DATE]

,[IN_USR_ID],[UP_DATE],[UP_USR_ID])

VALUES

('Item003','Chiken Burger',125,2,5,'Spicy',GETDATE(),'SHANU'

,GETDATE(),'SHANU')

INSERT INTO [ItemMasters] ([Item_Code],[Item_Name],[Price],[TAX1],[Discount],[Description],[IN_DATE]

,[IN_USR_ID],[UP_DATE],[UP_USR_ID])

VALUES

('Item004','Potato Fry',15,0,0,'No Comments',GETDATE(),'SHANU'

,GETDATE(),'SHANU')

创建Order Master表:

CREATE TABLE [dbo].[OrderMasters](

[Order_No] [varchar](20) NOT NULL,

[Table_ID] [varchar](20) NOT NULL,

[Description] [varchar](200) NOT NULL,

[IN_DATE] [datetime] NOT NULL,

[IN_USR_ID] [varchar](20) NOT NULL,

[UP_DATE] [datetime] NOT NULL,

[UP_USR_ID] [varchar](20) NOT NULL,

CONSTRAINT [PK_OrderMasters] PRIMARY KEY CLUSTERED

(

[Order_No] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

向Order Master表插入数据:

INSERT INTO [OrderMasters]

([Order_No],[Table_ID] ,[Description],[IN_DATE],[IN_USR_ID],[UP_DATE],[UP_USR_ID])

VALUES

('Ord_001','T1','',GETDATE(),'SHANU' ,GETDATE(),'SHANU')

INSERT INTO [OrderMasters]

([Order_No],[Table_ID] ,[Description],[IN_DATE],[IN_USR_ID],[UP_DATE],[UP_USR_ID])

VALUES

('Ord_002','T2','',GETDATE(),'Mak' ,GETDATE(),'MAK')

INSERT INTO [OrderMasters]

([Order_No],[Table_ID] ,[Description],[IN_DATE],[IN_USR_ID],[UP_DATE],[UP_USR_ID])

VALUES

('Ord_003','T3','',GETDATE(),'RAJ' ,GETDATE(),'RAJ')

创建Order Detail表:

CREATE TABLE [dbo].[OrderDetails](

[Order_Detail_No] [varchar](20) NOT NULL,

[Order_No] [varchar](20) CONSTRAINT fk_OrderMasters FOREIGN KEY REFERENCES OrderMasters(Order_No),

[Item_Code] [varchar](20) CONSTRAINT fk_ItemMasters FOREIGN KEY REFERENCES ItemMasters(Item_Code),

[Notes] [varchar](200) NOT NULL,

[QTY] INT NOT NULL,

[IN_DATE] [datetime] NOT NULL,

[IN_USR_ID] [varchar](20) NOT NULL,

[UP_DATE] [datetime] NOT NULL,

[UP_USR_ID] [varchar](20) NOT NULL,

CONSTRAINT [PK_OrderDetails] PRIMARY KEY CLUSTERED

(

[Order_Detail_No] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

--Now let’s insert the 3 items for the above Order No 'Ord_001'.

INSERT INTO [OrderDetails]

([Order_Detail_No],[Order_No],[Item_Code],[Notes],[QTY]

,[IN_DATE],[IN_USR_ID],[UP_DATE],[UP_USR_ID])

VALUES

('OR_Dt_001','Ord_001','Item001','Need very Cold',3

,GETDATE(),'SHANU' ,GETDATE(),'SHANU')

INSERT INTO [OrderDetails]

([Order_Detail_No],[Order_No],[Item_Code],[Notes],[QTY]

,[IN_DATE],[IN_USR_ID],[UP_DATE],[UP_USR_ID])

VALUES

('OR_Dt_002','Ord_001','Item004','very Hot ',2

,GETDATE(),'SHANU' ,GETDATE(),'SHANU')

INSERT INTO [OrderDetails]

([Order_Detail_No],[Order_No],[Item_Code],[Notes],[QTY]

,[IN_DATE],[IN_USR_ID],[UP_DATE],[UP_USR_ID])

VALUES

('OR_Dt_003','Ord_001','Item003','Very Spicy',4

,GETDATE(),'SHANU' ,GETDATE(),'SHANU')

向Order Detail表插入数据:

INSERT INTO [OrderDetails]

([Order_Detail_No],[Order_No],[Item_Code],[Notes],[QTY]

,[IN_DATE],[IN_USR_ID],[UP_DATE],[UP_USR_ID])

VALUES

('OR_Dt_004','Ord_002','Item002','Need very Hot',2

,GETDATE(),'SHANU' ,GETDATE(),'SHANU')

INSERT INTO [OrderDetails]

([Order_Detail_No],[Order_No],[Item_Code],[Notes],[QTY]

,[IN_DATE],[IN_USR_ID],[UP_DATE],[UP_USR_ID])

VALUES

('OR_Dt_005','Ord_002','Item003','very Hot ',2

,GETDATE(),'SHANU' ,GETDATE(),'SHANU')

INSERT INTO [OrderDetails]

([Order_Detail_No],[Order_No],[Item_Code],[Notes],[QTY]

,[IN_DATE],[IN_USR_ID],[UP_DATE],[UP_USR_ID])

VALUES

('OR_Dt_006','Ord_003','Item003','Very Spicy',4

,GETDATE(),'SHANU' ,GETDATE(),'SHANU')

2、简单的Select查询语句

Select查询语句是SQL中最基本也是最重要的DML语句之一。那么什么是DML?DML全称Data Manipulation Language(数据操纵语言命令),它可以使用户能够查询数据库以及操作已有数据库中的数据。

下面我们在SQL Server中用select语句来查询我的姓名(Name):

SELECT 'My Name Is SYED SHANU'

-- With Column Name using 'AS'

SELECT 'My Name Is SYED SHANU' as 'MY NAME'

-- With more then the one Column

SELECT 'My Name' as 'Column1', 'Is' as 'Column2', 'SYED SHANU' as 'Column3'

在数据表中使用select查询:

-- To Display all the columns from the table we use * operator in select Statement.

Select * from ItemMasters

-- If we need to select only few fields from a table we can use the Column Name in Select Statement.

Select Item_Code

,Item_name as Item

,Price

,Description

,In_DATE

FROM

ItemMasters

3、合计和标量函数

合计函数和标量函数都是SQL Server的内置函数,我们可以在select查询语句中使用它们,比如Count(), Max(), Sum(), Upper(), lower(), Round()等等。下面我们用SQL代码来解释这些函数的用法:

select * from ItemMasters

-- Aggregate

-- COUNT() -> returns the Total no of records from table , AVG() returns the Average Value from Colum,MAX() Returns MaX Value from Column

-- ,MIN() returns Min Value from Column,SUM() sum of total from Column

Select Count(*) TotalRows,AVG(Price) AVGPrice

,MAX(Price) MAXPrice,MIN(Price) MinPrice,Sum(price) PriceTotal

FROM ItemMasters

-- Scalar

-- UCASE() -> Convert to Upper Case ,LCASE() -> Convert to Lower Case,

-- SUBSTRING() ->Display selected char from column ->SUBSTRING(ColumnName,StartIndex,LenthofChartoDisplay)

--,LEN() -> lenth of column date,

-- ROUND() -> Which will round the value

SELECT UPPER(Item_NAME) Uppers,LOWER(Item_NAME) Lowers,

SUBSTRING(Item_NAME,2,3) MidValue,LEN(Item_NAME) Lenths

,SUBSTRING(Item_NAME,2,LEN(Item_NAME)) MidValuewithLenFunction,

ROUND(Price,0) as Rounded

FROM ItemMasters

4、日期函数

在我们的项目数据表中基本都会使用到日期列,因此日期函数在项目中扮演着非常重要的角色。有时候我们对日期函数要非常的小心,它随时可以给你带来巨大的麻烦。在项目中,我们要选择合适的日期函数和日期格式,下面是一些SQL日期函数的例子:

-- GETDATE() -> to Display the Current Date and Time

-- Format() -> used to display our date in our requested format

Select GETDATE() CurrentDateTime, FORMAT(GETDATE(),'yyyy-MM-dd') AS DateFormats,

FORMAT(GETDATE(),'HH-mm-ss')TimeFormats,

CONVERT(VARCHAR(10),GETDATE(),10) Converts1,

CONVERT(VARCHAR(24),GETDATE(),113),

CONVERT(NVARCHAR, getdate(), 106) Converts2 ,-- here we used Convert Function

REPLACE(convert(NVARCHAR, getdate(), 106), ' ', '/') Formats-- Here we used replace and --convert functions.

--first we convert the date to nvarchar and then we replace the '' with '/'

select * from Itemmasters

Select ITEM_NAME,IN_DATE CurrentDateTime, FORMAT(IN_DATE,'yyyy-MM-dd') AS DateFormats,

FORMAT(IN_DATE,'HH-mm-ss')TimeFormats,

CONVERT(VARCHAR(10),IN_DATE,10) Converts1,

CONVERT(VARCHAR(24),IN_DATE,113),

convert(NVARCHAR, IN_DATE, 106) Converts2 ,-- here we used Convert Function

REPLACE(convert(NVARCHAR,IN_DATE, 106), ' ', '/') Formats

FROM Itemmasters

DatePart –>  该函数可以获取年、月、日的信息。

DateADD –>  该函数可以对当前的日期进行加减。

DateDiff  –>  该函数可以比较2个日期。

--Datepart DATEPART(dateparttype,yourDate)

SELECT DATEPART(yyyy,getdate()) AS YEARs ,

DATEPART(mm,getdate()) AS MONTHS,

DATEPART(dd,getdate()) AS Days,

DATEPART(week,getdate()) AS weeks,

DATEPART(hour,getdate()) AS hours

--Days Add to add or subdtract date from a selected date.

SELECT GetDate()CurrentDate,DATEADD(day,12,getdate()) AS AddDays ,

DATEADD(day,-4,getdate()) AS FourDaysBeforeDate

-- DATEDIFF() -> to display the Days between 2 dates

select DATEDIFF(year,'2003-08-05',getdate()) yearDifferance ,

DATEDIFF(day,DATEADD(day,-24,getdate()),getdate()) daysDifferent,

DATEDIFF(month,getdate(),DATEADD(Month,6,getdate())) MonthDifferance

5、其他Select函数

Top —— 结合select语句,Top函数可以查询头几条和末几条的数据记录。

Order By —— 结合select语句,Order By可以让查询结果按某个字段正序和逆序输出数据记录。

--Top to Select Top first and last records using Select Statement.

Select * FROM ItemMasters

--> First Display top 2 Records

Select TOP 2 Item_Code

,Item_name as Item

,Price

,Description

,In_DATE

FROM ItemMasters

--> to Display the Last to Records we need to use the Order By Clause

-- order By to display Records in assending or desending order by the columns

Select TOP 2 Item_Code

,Item_name as Item

,Price

,Description

,In_DATE

FROM ItemMasters

ORDER BY Item_Code DESC

Distinct —— distinct关键字可以过滤重复的数据记录。

Select * FROM ItemMasters

--Distinct -> To avoid the Duplicate records we use the distinct in select statement

-- for example in this table we can see here we have the duplicate record 'Chiken Burger'

-- but with different Item_Code when i use the below select statement see what happen

Select Item_name as Item

,Price

,Description

,IN_USR_ID

FROM ItemMasters

-- here we can see the Row No 3 and 5 have the duplicate record to avoid this we use the distinct Keyword in select statement.

select Distinct Item_name as Item

,Price

,Description

,IN_USR_ID

FROM ItemMasters

6、Where子句

Where子句在SQL Select查询语句中非常重要,为什么要使用where子句?什么时候使用where子句?where子句是利用一些条件来过滤数据结果集。

下面我们从10000条数据记录中查询Order_No为某个值或者某个区间的数据记录,另外还有其他的条件。

Select * from ItemMasters

Select * from OrderDetails

--Where -> To display the data with certain conditions

-- Now below example which will display all the records which has Item_Name='Coke'

select * FROM ItemMasters WHERE ITEM_NAME='COKE'

-- If we want display all the records Iten_Name which Starts with 'C' then we use Like in where clause.

SELECT * FROM ItemMasters WHERE ITEM_NAME Like 'C%'

--> here we display the ItemMasters where the price will be greater then or equal to 40.

--> to use more then one condition we can Use And or Or operator.

--If we want to check the data between to date range then we can use Between Operator in Where Clause.

select Item_name as Item

,Price

,Description

,IN_USR_ID

FROM ItemMasters

WHERE

ITEM_NAME Like 'C%'

AND

price >=40

--> here we display the OrderDetails where the Qty will be greater 3

Select * FROM OrderDetails WHERE qty>3

Where – In 子句

-- In clause -> used to display the data which is in the condition

select *

FROM ItemMasters

WHERE

Item_name IN ('Coffee','Chiken Burger')

-- In clause with Order By - Here we display the in descending order.

select *

FROM ItemMasters

WHERE

Item_name IN ('Coffee','Chiken Burger')

ORDER BY Item_Code Desc

Where – Between子句

-- between -> Now if we want to display the data between to date range then we use betweeen keyword

select * FROM ItemMasters

select * FROM ItemMasters

WHERE

In_Date BETWEEN '2014-09-22 15:59:02.853' AND '2014-09-22 15:59:02.853'

select * FROM ItemMasters

WHERE

ITEM_NAME Like 'C%'

AND

In_Date BETWEEN '2014-09-22 15:59:02.853' AND '2014-09-22 15:59:02.853'

查询某个条件区间的数据,我们常常使用between子句。

7、Group By 子句

Group By子句可以对查询的结果集按指定字段分组:

--Group By -> To display the data with group result.Here we can see we display all the AQggregate result by Item Name

Select ITEM_NAME,Count(*) TotalRows,AVG(Price) AVGPrice

,MAX(Price) MAXPrice,MIN(Price) MinPrice,Sum(price) PriceTotal

FROM

ItemMasters

GROUP BY ITEM_NAME

-- Here this group by will combine all the same Order_No result and make the total or each order_NO

Select Order_NO,Sum(QTy) as TotalQTY

FROM OrderDetails

where qty>=2

GROUP BY Order_NO

-- Here the Total will be created by order_No and Item_Code

Select Order_NO,Item_Code,Sum(QTy) as TotalQTY

FROM OrderDetails

where qty>=2

GROUP BY Order_NO,Item_Code

Order By Order_NO Desc,Item_Code

Group By & Having 子句

--Group By Clause -- here this will display all the Order_no

Select Order_NO,Sum(QTy) as TotalQTY

FROM OrderDetails

GROUP BY Order_NO

-- Having Clause-- This will avoid the the sum(qty) less then 4

Select Order_NO,Sum(QTy) as TotalQTY

FROM OrderDetails

GROUP BY Order_NO

HAVING Sum(QTy) >4

8、子查询

子查询一般出现在where内连接查询和嵌套查询中,select、update和delete语句中均可以使用。

--Sub Query -- Here we used the Sub query in where clause to get all the Item_Code where the price>40 now this sub

--query reslut we used in our main query to filter all the records which Item_code from Subquery result

SELECT * FROM ItemMasters

WHERE Item_Code IN

(SELECT Item_Code FROM ItemMasters WHERE price > 40)

-- Sub Query with Insert Statement

INSERT INTO ItemMasters ([Item_Code] ,[Item_Name],[Price],[TAX1],[Discount],[Description],[IN_DATE]

,[IN_USR_ID],[UP_DATE] ,[UP_USR_ID])

Select 'Item006'

,Item_Name,Price+4,TAX1,Discount,Description

,GetDate(),'SHANU',GetDate(),'SHANU'

from ItemMasters

where Item_code='Item002'

--After insert we can see the result as

Select * from ItemMasters

9、连接查询

到目前为止我们接触了不少单表的查询语句,现在我们来使用连接查询获取多个表的数据。

简单的join语句:

--Now we have used the simple join with out any condition this will display all the

-- records with duplicate data to avaoid this we see our next example with condition

SELECT * FROM Ordermasters,OrderDetails

-- Simple Join with Condition now here we can see the duplicate records now has been avoided by using the where checing with both table primaryKey field

SELECT *

FROM

Ordermasters as M, OrderDetails as D

where M.Order_NO=D.Order_NO

and M.Order_NO='Ord_001'

-- Now to make more better understanding we need to select the need fields from both

--table insted of displaying all column.

SELECT M.order_NO,M.Table_ID,D.Order_detail_no,Item_code,Notes,Qty

FROM

Ordermasters as M, OrderDetails as D

where M.Order_NO=D.Order_NO

-- Now lets Join 3 table

SELECT M.order_NO,M.Table_ID,D.Order_detail_no,I.Item_Name,D.Notes,D.Qty,I.Price,

I.Price*D.Qty as TotalPrice

FROM

Ordermasters as M, OrderDetails as D,ItemMasters as I

where

M.Order_NO=D.Order_NO AND D.Item_Code=I.Item_Code

Inner Join,Left Outer Join,Right Outer Join and Full outer Join

下面是各种类型的连接查询代码:

--INNER JOIN

--This will display the records which in both table Satisfy here i have used Like in where class which display the

SELECT M.order_NO,M.Table_ID,D.Order_detail_no,I.Item_Name,D.Notes,D.Qty,I.Price,I.Price*D.Qty as TotalPrice

FROM

Ordermasters as M Inner JOIN OrderDetails as D

ON M.Order_NO=D.Order_NO

INNER JOIN ItemMasters as I

ON D.Item_Code=I.Item_Code

WHERE

M.Table_ID like 'T%'

--LEFT OUTER JOIN

--This will display the records which Left side table Satisfy

SELECT M.order_NO,M.Table_ID,D.Order_detail_no,I.Item_Name,D.Notes,D.Qty,I.Price,I.Price*D.Qty as TotalPrice

FROM

Ordermasters as M LEFT OUTER JOIN OrderDetails as D

ON M.Order_NO=D.Order_NO

LEFT OUTER JOIN ItemMasters as I

ON D.Item_Code=I.Item_Code

WHERE

M.Table_ID like 'T%'

--RIGHT OUTER JOIN

--This will display the records which Left side table Satisfy

SELECT M.order_NO,M.Table_ID,D.Order_detail_no,I.Item_Name,D.Notes,D.Qty,I.Price,I.Price*D.Qty as TotalPrice

FROM

Ordermasters as M RIGHT OUTER JOIN OrderDetails as D

ON M.Order_NO=D.Order_NO

RIGHT OUTER JOIN ItemMasters as I

ON D.Item_Code=I.Item_Code

WHERE

M.Table_ID like 'T%'

--FULL OUTER JOIN

--This will display the records which Left side table Satisfy

SELECT M.order_NO,M.Table_ID,D.Order_detail_no,I.Item_Name,D.Notes,D.Qty,I.Price,I.Price*D.Qty as TotalPrice

FROM

Ordermasters as M FULL OUTER JOIN OrderDetails as D

ON M.Order_NO=D.Order_NO

FULL OUTER JOIN ItemMasters as I

ON D.Item_Code=I.Item_Code

WHERE

M.Table_ID like 'T%'

10、Union合并查询

Union查询可以把多张表的数据合并起来,Union只会把唯一的数据查询出来,而Union ALL则会把重复的数据也查询出来。

Select column1,Colum2 from Table1

Union

Select Column1,Column2 from Table2

Select column1,Colum2 from Table1

Union All

Select Column1,Column2 from Table2

具体的例子如下:

--Select with different where condition which display the result as 2 Table result

select Item_Code,Item_Name,Price,Description FROM ItemMasters where price <=44

select Item_Code,Item_Name,Price,Description FROM ItemMasters where price >44

-- Union with same table but with different where condition now which result as one table which combine both the result.

select Item_Code,Item_Name,Price,Description FROM ItemMasters where price <=44

UNION

select Item_Code,Item_Name,Price,Description FROM ItemMasters where price >44

-- Union ALL with Join sample

SELECT M.order_NO,M.Table_ID,D.Order_detail_no,I.Item_Name,D.Notes,D.Qty,I.Price,I.Price*D.Qty as TotalPrice

FROM

Ordermasters as M (NOLOCK) Inner JOIN OrderDetails as D

ON M.Order_NO=D.Order_NO INNER JOIN ItemMasters as I

ON D.Item_Code=I.Item_Code WHERE I.Price <=44

Union ALL

SELECT M.order_NO,M.Table_ID,D.Order_detail_no,I.Item_Name,D.Notes,D.Qty,I.Price,I.Price*D.Qty as TotalPrice

FROM

Ordermasters as M (NOLOCK) Inner JOIN OrderDetails as D

ON M.Order_NO=D.Order_NO INNER JOIN ItemMasters as I

ON D.Item_Code=I.Item_Code WHERE I.Price>44

11、公用表表达式(CTE)——With语句

CTE可以看作是一个临时的结果集,可以在接下来的一个SELECT,INSERT,UPDATE,DELETE,MERGE语句中被多次引用。使用公用表达式可以让语句更加清晰简练。

declare @sDate datetime,

@eDate datetime;

select @sDate = getdate()-5,

@eDate = getdate()+16;

--select @sDate StartDate,@eDate EndDate

;with cte as

(

select @sDate StartDate,'W'+convert(varchar(2),

DATEPART( wk, @sDate))+'('+convert(varchar(2),@sDate,106)+')' as 'SDT'

union all

select dateadd(DAY, 1, StartDate) ,

'W'+convert(varchar(2),DATEPART( wk, StartDate))+'('+convert(varchar(2),

dateadd(DAY, 1, StartDate),106)+')' as 'SDT'

FROM cte

WHERE dateadd(DAY, 1, StartDate)<= @eDate

)

select * from cte

option (maxrecursion 0)

12、视图

很多人对视图View感到很沮丧,因为它看起来跟select语句没什么区别。在视图中我们同样可以使用select查询语句,但是视图对我们来说依然非常重要。

假设我们要联合查询4张表中的20几个字段,那么这个select查询语句会非常复杂。但是这样的语句我们在很多地方都需要用到,如果将它编写成视图,那么使用起来会方便很多。利用视图查询有以下几个优点:

一定程度上提高查询速度

可以对一些字段根据不同的权限进行屏蔽,因此提高了安全性

对多表的连接查询会非常方便

下面是一个视图的代码例子:

CREATE

VIEW viewname

AS

Select ColumNames from yourTable

Example :

-- Here we create view for our Union ALL example

Create

VIEW myUnionVIEW

AS

SELECT M.order_NO,M.Table_ID,D.Order_detail_no,I.Item_Name,D.Notes,D.Qty,I.Price,

I.Price*D.Qty as TotalPrice

FROM

Ordermasters as M Inner JOIN OrderDetails as D

ON M.Order_NO=D.Order_NO INNER JOIN ItemMasters as I

ON D.Item_Code=I.Item_Code WHERE I.Price <=44

Union ALL

SELECT M.order_NO,M.Table_ID,D.Order_detail_no,I.Item_Name,D.Notes,D.Qty,I.Price,

I.Price*D.Qty as TotalPrice

FROM

Ordermasters as M Inner JOIN OrderDetails as D

ON M.Order_NO=D.Order_NO INNER JOIN ItemMasters as I

ON D.Item_Code=I.Item_Code WHERE I.Price>44

-- View Select query

Select * from myUnionVIEW

-- We can also use the View to display with where condition and with selected fields

Select order_Detail_NO,Table_ID,Item_Name,Price from myUnionVIEW where price >40

13、Pivot行转列

Pivot可以帮助你实现数据行转换成数据列,具体用法如下:

-- Simple Pivot Example

SELECT * FROM ItemMasters

PIVOT(SUM(Price)

FOR ITEM_NAME IN ([Chiken Burger], Coffee,Coke)) AS PVTTable

-- Pivot with detail example

SELECT *

FROM (

SELECT

ITEM_NAME,

price as TotAmount

FROM ItemMasters

) as s

PIVOT

(

SUM(TotAmount)

FOR [ITEM_NAME] IN ([Chiken Burger], [Coffee],[Coke])

)AS MyPivot

14、存储过程

我经常看到有人提问如何在SQL Server中编写多条查询的SQL语句,然后将它们使用到C#程序中去。存储过程就可以完成这样的功能,存储过程可以将多个SQL查询聚集在一起,创建存储过程的基本结构是这样的:

CREATE PROCEDURE [ProcedureName]

AS

BEGIN

-- Select or Update or Insert query.

END

To execute SP we use

exec ProcedureName

创建一个没有参数的存储过程:

-- =============================================

-- Author : Shanu

-- Create date : 2014-09-15

-- Description : To Display Pivot Data

-- Latest

-- Modifier : Shanu

-- Modify date : 2014-09-15

-- =============================================

-- exec USP_SelectPivot

-- =============================================

Create PROCEDURE [dbo].[USP_SelectPivot]

AS

BEGIN

DECLARE @MyColumns AS NVARCHAR(MAX),

@SQLquery AS NVARCHAR(MAX)

-- here first we get all the ItemName which should be display in Columns we use this in our necxt pivot query

select @MyColumns = STUFF((SELECT ',' + QUOTENAME(Item_NAME)

FROM ItemMasters

GROUP BY Item_NAME

ORDER BY Item_NAME

FOR XML PATH(''), TYPE

).value('.', 'NVARCHAR(MAX)')

,1,1,'')

-- here we use the above all Item name to disoplay its price as column and row display

set @SQLquery = N'SELECT ' + @MyColumns + N' from

(

SELECT

ITEM_NAME,

price as TotAmount

FROM ItemMasters

) x

pivot

(

SUM(TotAmount)

for ITEM_NAME in (' + @MyColumns + N')

) p '

exec sp_executesql @SQLquery;

RETURN

END

15、函数Function

之前我们介绍了MAX(),SUM(), GetDate()等最基本的SQL函数,现在我们来看看如何创建自定义SQL函数。创建函数的格式如下:

Create Function functionName

As

Begin

END

下面是一个简单的函数示例:

-- =============================================

-- Author : Shanu

-- Create date : 2014-09-15

-- Description : To Display Pivot Data

-- Latest

-- Modifier : Shanu

-- Modify date : 2014-09-15

Alter FUNCTION [dbo].[ufnSelectitemMaster]()

RETURNS int

AS

-- Returns total Row count of Item Master.

BEGIN

DECLARE @RowsCount AS int;

Select @RowsCount= count(*)+1 from ItemMasters

RETURN @RowsCount;

END

-- to View Function we use select and fucntion Name

select [dbo].[ufnSelectitemMaster]()

下面的一个函数可以实现从给定的日期中得到当前月的最后一天:

-- =============================================

-- Author : Shanu

-- Create date : 2014-09-15

-- Description : To Display Pivot Data

-- Latest

-- Modifier : Shanu

-- Modify date : 2014-09-15

ALTER FUNCTION [dbo].[ufn_LastDayOfMonth]

(

@DATE NVARCHAR(10)

)

RETURNS NVARCHAR(10)

AS

BEGIN

RETURN CONVERT(NVARCHAR(10), DATEADD(D, -1, DATEADD(M, 1, CAST(SUBSTRING(@DATE,1,7) + '-01' AS DATETIME))), 120)

END

SELECT dbo.ufn_LastDayOfMonth('2014-09-01')AS LastDay

原文:Basic SQL Queries for Beginners 翻译:codeceo – 小峰

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:AEAI DP创建弹窗
下一篇:企业信息化认知的四个误区
相关文章

 发表评论

暂时没有评论,来抢沙发吧~