一篇文章搞懂数据仓库:常用ETL工具、方法

网友投稿 932 2022-09-06

一篇文章搞懂数据仓库:常用ETL工具、方法

一篇文章搞懂数据仓库:常用ETL工具、方法

目录

​​一、什么是ETL?​​

​​二、ETL & ELT​​

​​三、常用的ETL工具​​

​​3.1 sqoop​​

​​3.2 DataX​​

​​3.3 Kettle​​

​​3.4 canal​​

​​3.5 StreamSets​​

​​四、ETL加载策略​​

​​4.1 增量​​

​​4.2 全量​​

​​4.3 流式​​

​​小编有话​​

一、什么是ETL?

ETL,是英文Extract-Transform-Load的缩写,用来描述将​​数据​​​从来源端经过抽取(extract)、​​转换​​(transform)、加载(load)至目的端的过程,是数据仓库的生命线。

抽取(Extract)主要是针对各个业务系统及不同服务器的分散数据,充分理解数据定义后,规划需要的数据源及数据定义,制定可操作的数据源,制定增量抽取和缓慢渐变的规则。

转换(transform)主要是针对数据仓库建立的模型,通过一系列的转换来实现将数据从业务模型到分析模型,通过ETL工具可视化拖拽操作可以直接使用标准的内置代码片段功能、自定义脚本、函数、存储过程以及其他的扩展方式,实现了各种复杂的转换,并且支持自动分析日志,清楚的监控数据转换的状态并优化分析模型。

装载(Load)主要是将经过转换的数据装载到数据仓库里面,可以通过直连数据库的方式来进行数据装载,可以充分体现高效性。在应用的时候可以随时调整数据抽取工作的运行方式,可以灵活的集成到其他管理系统中。

二、ETL & ELT

伴随着数据仓库的发展(​​传送门:数据仓库的八个发展阶段​​),数据量从小到大,数据实时性从T+1到准实时、实时,ETL也在不断演进。

在传统数仓中,数据量小,计算逻辑相对简单,我们可以直接用ETL工具实现数据转换(T),转换之后再加载到目标库,即(Extract-Transform-Load)。但在大数据场景下,数据量越大越大,计算逻辑愈发复杂,数据清洗需放在运算能力更强的分布式计算引擎中完成,ETL也就变成了ELT(Extract-Load-Transform)。

即:Extract-Transform-Load  >>  Extract-Load-Transform

通常我们所说的ETL,已经泛指数据同步、数据清洗全过程,而不仅限于数据的抽取-转换-加载。

三、常用的ETL工具

下面小编将介绍几类ETL工具(sqoop,DataX,Kettle,canal,StreamSets)。

3.1 sqoop

是Apache开源的一款在Hadoop和关系数据库服务器之间传输数据的工具。可以将一个关系型数据库(MySQL ,Oracle等)中的数据导入到Hadoop的HDFS中,也可以将HDFS的数据导出到关系型数据库中。sqoop命令的本质是转化为MapReduce程序。sqoop分为导入(import)和导出(export),策略分为table和query模式分为增量和全量。

3.2 DataX

DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台实现包括 MySQL、Oracle、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、DRDS 等各种异构数据源之间高效的数据同步功能。

3.3 Kettle

一款国外免费开源的、可视化的、功能强大的ETL工具,纯java编写,可以在Windows、Linux、Unix上运行,数据抽取高效稳定。

3.4 canal

canal是阿里巴巴旗下的一款开源项目,纯Java开发。基于数据库增量日志解析,提供增量数据实时订阅和消费,目前主要支持了MySQL,也支持mariaDB。

3.5 StreamSets

是大数据实时采集ETL工具,可以实现不写一行代码完成数据的采集和流转。通过拖拽式的可视化界面,实现数据管道(Pipelines)的设计和定时任务调度。创建一个Pipelines管道需要配置数据源(Origins)、操作(Processors)、目的地(Destinations)三部分。

四、ETL加载策略

4.1 增量

有些表巨大,我们需要选择增量策略,新增delta数据需要和存量数据merge合并。两种方法:

merge(一)

merge(二)

只有新增(full join。能拿更新表就拿更新表)

新增+删除

history-table Left join delet-table where delect-table.value is null == 表a表a full join update-table (能拿update就拿update)

4.2 全量

每天一个全量表,也可一个hive天分区一个全量。

4.3 流式

使用kafka,消费mysql binlog日志到目标库,源表和目标库是1:1的镜像。

小编有话

无论是全量还是增量的方式,都会浪费多余的存储或通过计算去重,得到最新的全量数据。为解决这一问题,墙裂建议kafka的数据同步方案,源表变化一条,目标表消费一条,目标表数据始终是一份最新全量数据,且为实时同步的。

ps.极端情况下可能会丢数,需要写几个监控监本(详见数据质量篇)和补数脚本即可~

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:mysql 连接数据库(mysql数据库基础知识)
下一篇:Linux grep命令详解
相关文章

 发表评论

暂时没有评论,来抢沙发吧~