1、下列时间序列模型中,哪一个模型可以较好地拟合波动性的分析和预测。

网友投稿 1316 2022-09-05

1、下列时间序列模型中,哪一个模型可以较好地拟合波动性的分析和预测。

1、下列时间序列模型中,哪一个模型可以较好地拟合波动性的分析和预测。

感想

这对我来说应该算是一个超纲的题目,我从没接触过时间序列预测的问题,我这里也弥补一下。

problem

1、下列时间序列模型中,哪一个模型可以较好地拟合波动性的分析和预测。

A. AR模型

B. MA模型

C. ARMA模型

D. GARCH模型

答案为:D

analysis

AR模型是一种线性预测,即已知N个数据,可由模型推出第N点前面或后面的数据(设推出P点),所以其本质类似于插值。

MA模型(moving average model)滑动平均模型,其中使用趋势移动平均法建立直线趋势的预测模型。

ARMA模型(auto regressive moving average model)自回归滑动平均模型,模型参量法高分辨率谱分析方法之一。这种方法是研究平稳随机过程有理谱的典型方法。它比AR模型法与MA模型法有较精确的谱估计及较优良的谱分辨率性能,但其参数估算比较繁琐。

GARCH模型称为广义ARCH模型,是ARCH模型的拓展,由Bollerslev(1986)发展起来的。它是ARCH模型的推广。GARCH(p,0)模型,相当于ARCH(p)模型。GARCH模型是一个专门针对金融数据所量体订做的回归模型,除去和普通回归模型相同的之处,GARCH对误差的方差进行了进一步的建模。特别适用于波动性的分析和预测,这样的分析对投资者的决策能起到非常重要的指导性作用,其意义很多时候超过了对数值本身的分析和预测。

移动平均法 (MA)

简单移动平均法

设有一时间序列y1,y2,..., 则按数据点的顺序逐点推移求出N个数的平均数,即可得到一次移动平均数.

趋势移动平均法

当时间序列没有明显的趋势变动时,使用一次移动平均就能够准确地反映实际情况,直接用第t周期的一次移动平均数就可预测第t+1周期之值。

时间序列出现线性变动趋势时,用一次移动平均数来预测就会出现滞后偏差。修正的方法是在一次移动平均的基础上再做二次移动平均,利用移动平均滞后偏差的规律找出曲线的发展方向和发展趋势,然后才建立直线趋势的预测模型。故称为趋势移动平均法。

自回归模型(AR)

AR模型是一种线性预测,即已知N个数据,可由模型推出第N点前面或后面的数据(设推出P点).本质类似于插值,其目的都是为了增加有效数据,只是AR模型是由N点递推,而插值是由两点(或少数几点)去推导多点,所以AR模型要比插值方法效果更好。

自回归滑动平均模型(ARMA)

其建模思想可概括为:逐渐增加模型的阶数,拟合较高阶模型,直到再增加模型的阶数而剩余残差方差不再显著减小为止。

GARCH模型

ARCH模型的实质是使用残差平方序列的q阶移动平均移拟合当期异方差函数值,由于移动平均模型具有自相关系数q阶截尾性,所以ARCH模型实际上只适用于异方差函数短期自相关系数。

但是在实践中,有些残差序列的异方差函数是具有长期自关性,这时使用ARCH模型拟合异方差函数,将会产生很高的移动平均阶数,增加参数估计的难度并最终影响ARCH模型的拟合精度。

为了修正个问题,提出了广义自回归条件异方差模型, 这个模型简记为GARCH(p,q).

GARCH模型实际上就是在ARCH的基础上,增加考虑异方差函数的p阶自回归性而形成,它可以有效的拟合具有长期记忆性的异方差函数。ARCH模型是GARCH模型的一个特例,p=0的GARCH(p,q)模型。

参考文献

[1].七月在线.

​​https://julyedu.com/question/selectAnalyze/kp_id/23/cate/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0​​

[2].时间序列模型中,哪一个模型可以较好地拟合波动性的分析和预测.

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:ubuntu tmux复制粘贴总结
下一篇:memcached与redis实现的对比(Redis相比memcached有哪些优势?)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~