SpringBoot 2.0 整合sharding

网友投稿 386 2023-08-06

SpringBoot 2.0 整合sharding

SpringBoot 2.0 整合sharding

一、水平分割

1、水平分库

1)、概念:

 以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中。

2)、结果

 每个库的结构都一样;数据都不一样;

 所有库的并集是全量数据;

2、水平分表

1)、概念

 以字段为依据,按照一定策略,将一个表中的数据拆分到多个表中。

2)、结果

 每个表的结构都一样;数据都不一样;

 所有表的并集是全量数据;

二、Shard-jdbc 中间件

1、架构图

2、特点

1)、Sharding-JDBC直接封装JDBC API,旧代码迁移成本几乎为零。

2)、适用于任何基于java的ORM框架,如Hibernate、Mybatis等 。

3)、可基于任何第三方的数据库连接池,如DBCP、C3P0、 BoneCP、Druid等。

4)、以jar包形式提供服务,无proxy代理层,无需http://额外部署,无其他依赖。

5)、分片策略灵活,可支持等号、between、in等多维度分片,也可支持多分片键。

6)、SQL解析功能完善,支持聚合、分组、排序、limit、or等查询。

三、项目演示

1、项目结构

springboot     2.0 版本

druid          1.1.13 版本

sharding-jdbc  3.1 版本

2、数据库配置

一台基础库映射(shard_one)

两台库做分库分表(shard_two,shard_three)。

表使用:table_one,table_two

3、核心代码块

数据源配置文件

spring:

datasource:

# 数据源:shard_one

dataOne:

type: com.alibaba.druid.pool.DruidDataSource

druid:

driverClassName: com.mysql.jdbc.Driver

url: jdbc:mysql://localhost:3306/shard_one?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false

username: root

password: 123

initial-size: 10

max-active: 100

min-idle: 10

max-wait: 60000

pool-prepared-statements: true

max-pool-prepared-statement-per-connection-size: 20

time-between-eviction-runs-millis: 60000

min-evictable-idle-time-millis: 300000

max-evictable-idle-time-millis: 60000

validation-query: SELECT 1 FROM DUAL

# validation-query-timeout: 5000

test-on-borrow: false

test-on-return: false

test-while-idle: true

connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000

# 数据源:shard_two

dataTwo:

type: com.alibaba.druid.pool.DruidDataSource

druid:

driverClassName: com.mysql.jdbc.Driver

url: jdbc:mysql://localhost:3306/shard_two?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false

username: root

password: 123

initial-size: 10

max-active: 100

min-idle: 10

max-wait: 60000

pool-prepared-statements: true

max-pool-prepared-statement-per-connection-size: 20

time-between-eviction-runs-millis: 60000

min-evictable-idle-time-millis: 300000

max-evictable-idle-time-millis: 60000

validation-query: SELECT 1 FROM DUAL

# validation-query-timeout: 5000

test-on-borrow: false

test-on-return: false

test-while-idle: true

connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000

# 数据源:shard_three

dataThree:

type: com.alibaba.druid.pool.DruidDataSource

druid:

driverClassName: com.mysql.jdbc.Driver

url: jdbc:mysql://localhost:3306/shard_three?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false

username: root

password: 123

initial-size: 10

max-active: 100

min-idle: 10

max-wait: 60000

pool-prepared-statements: true

max-pool-prepared-statement-per-connection-size: 20

time-between-eviction-runs-millis: 60000

min-evictable-idle-time-millis: 300000

max-evictable-idle-time-millis: 60000

validation-query: SELECT 1 FROM DUAL

# validation-query-timeout: 5000

test-on-borrow: false

test-on-return: false

test-while-idle: true

connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000

数据库分库策略

/**

* 数据库映射计算

*/

public class DataSourceAlg implements PreciseShardingAlgorithm {

private static Logger LOG = LoggerFactory.getLogger(DataSourceAlg.class);

@Override

public String doSharding(Collection names, PreciseShardingValue value) {

LOG.debug("分库算法参数 {},{}",names,value);

int hash = HashUtil.rsHash(String.valueOf(value.getValue()));

return "ds_" + ((hash % 2) + 2) ;

}

}

数据表1分表策略

/**

* 分表算法

*/

public class TableOneAlg implements PreciseSKVmeIGqHhardingAlgorithm {

private static Logger LOG = LoggerFactory.getLogger(TableOneAlg.class);

/**

* 该表每个库分5张表

*/

@Override

public String doSharding(Collection names, PreciseShardingValue value) {

LOG.debug("分表算法参数 {},{}",names,value);

int hash = HashUtil.rsHash(String.valueOf(value.getValue()));

return "table_one_" + (hash % 5+1);

}

}

数据表2分表策略

/**

* 分表算法

*/

public class TableTwoAlg implements PreciseShardingAlgorithm {

private static Logger LOG = LoggerFactory.getLogger(TableTwoAlg.class);

/**

* 该表每个库分5张表

*/

@Override

public String doSharding(CollectKVmeIGqHion names, PreciseShardingValue value) {

LOG.debug("分表算法参数 {},{}",names,value);

int hash = HashUtil.rsHash(String.valueOf(value.getValue()));

return "table_two_" + (hash % 5+1);

}

}

数据源集成配置

/**

* 数据库分库分表配置

*/

@Configuration

public class ShardJdbcConfig {

// 省略了 druid 配置,源码中有

/**

* Shard-JDBC 分库配置

*/

@Bean

public DataSource dataSource (@Autowired DruidDataSource dataOneSource,

@Autowired DruidDataSource dataTwoSource,

@Autowired DruidDataSource dataThreeSource) throws Exception {

ShardingRuleConfiguration shardJdbcConfig = new ShardingRuleConfiguration();

shardJdbcConfig.getTableRuleConfigs().add(getTableRule01());

shardJdbcConfig.getTableRuleConfigs().add(getTableRule02());

shardJdbcConfig.setDefaultDataSourceName("ds_0");

Map dataMap = new LinkedHashMap<>() ;

dataMap.put("ds_0",dataOneSource) ;

dataMap.put("ds_2",dataTwoSource) ;

dataMap.put("ds_3",dataThreeSource) ;

Properties prop = new Properties();

return ShardingDataSourceFactory.createDataSource(dataMap, shardJdbcConfig, new HashMap<>(), prop);

}

/**

* Shard-JDBC 分表配置

*/

private static TableRuleConfiguration getTableRule01() {

TableRuleConfiguration result = new TableRuleConfiguration();

result.setLogicTable("table_one");

result.setActualDataNodes("ds_${2..3}.table_one_${1..5}");

result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));

result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableOneAlg()));

return result;

}

private static TableRuleConfiguration getTableRule02() {

TableRuleConfiguration result = new TableRuleConfiguration();

result.setLogicTable("table_two");

result.setActualDataNodes("ds_${2..3}.table_two_${1..5}");

result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));

result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableTwoAlg()));

return result;

}

}

测试代码执行流程

@RestController

public class ShardController {

@Resource

private ShardService shardService ;

/**

* 1、建表流程

*/

@RequestMapping("/createTable")

public String createTable (){

shardService.createTable();

return "success" ;

}

/**

* 2、生成表 table_one 数据

*/

@RequestMapping("/insertOne")

public String insertOne (){

shardService.insertOne();

return "SUCCESS" ;

}

/**

* 3、生成表 table_two 数据

*/

@RequestMapping("/insertTwo")

public String insertTwo (){

shardService.insertTwo();

return "SUCCESS" ;

}

/**

* 4、查询表 table_one 数据

*/

@RequestMapping("/selectOneByPhone/{phone}")

public TableOne selectOneByPhone (@PathVariable("phone") String phone){

return shardService.selectOneByPhone(phone);

}

/**

* 5、查询表 table_one 数据

*/

@RequestMapping("/selectTwoByPhone/{phone}")

public TableTwo selectTwoByPhone (@PathVariable("phone") String phone){

return shardService.selectTwoByPhone(phone);

}

}

四、项目源码

github:知了一笑

https://github.com/cicadasmile/middle-ware-parent

总结

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:详解springcloud 基于feign的服务接口的统一hystrix降级处理
下一篇:Spring Boot 参数校验的具体实现方式
相关文章

 发表评论

暂时没有评论,来抢沙发吧~