政务服务平台开发需要注意如何提升小程序跨平台兼容性与用户体验
704
2022-09-04
基于深度多任务学习的人脸标志点检测-相关数据集
原文:
Facial Landmark Detection by Deep Multi-task Learning
Facial landmark detection of face alignment has long been impeded by the problems of occlusion and pose variation. Instead of treating the detection task as a single and independent problem, we investigate the possibility of improving detection robustness through multi-task learning. Specifically, we wish to optimize facial landmark detection together with heterogeneous but subtly correlated tasks, e.g., head pose estimation and facial attribute inference. This is non-trivial since different tasks have different learning difficulties and convergence rates. To address this problem, we formulate a novel tasks-constrained deep model, with task-wise early stopping to facilitate learning convergence. Extensive evaluations show that the proposed task-constrained learning (i) outperforms existing methods, especially in dealing with faces with severe occlusion and pose variation, and (ii) reduces model complexity drastically compared to the state-of-the-art method based on cascaded deep model.
We also extend this method to handle more landmark points (68 points instead of 5 major facial points) without either redesigning the deep model or involving significant increase in run time cost. This is made possible by transferring the learned 5-point model to the desired facial landmark configuration, through model fine-tuning with dense landmark annotations. Our new model achieves the state-of-the-art result on the 300-W benchmark dataset (mean error of 9.15% on the challenging IBUG subset).
译:
基于深度多任务学习的人脸标志点检测
长期以来,由于遮挡和姿态变化等问题,人脸定位中的标志点检测一直受到阻碍。我们研究了通过多任务学习提高检测鲁棒性的可能性,而不是将检测任务看作一个单独的独立问题。具体地说,我们希望将面部标志点检测与异构但微妙相关的任务(如头部姿势估计和面部属性推断)一起优化。这是非常重要的,因为不同的任务有不同的学习困难和收敛速度。为了解决这一问题,我们提出了一个新的任务约束深度模型,通过任务提前停止来促进学习收敛。大量的实验结果表明,本文提出的任务约束学习(i)优于现有的方法,尤其是在处理严重遮挡和姿态变化的人脸时;(ii)与基于级联深层模型的最新方法相比,显著降低了模型复杂度。
我们还扩展了这种方法来处理更多的地标点(68点而不是5个主要的面部点),而不需要重新设计深度模型,也不需要显著增加运行时间成本。通过使用密集的地标标注对模型进行微调,将所学的5点模型转换为所需的面部地标配置,从而实现这一点。我们的新模型在300-W基准数据集上达到了最先进的结果(在具有挑战性的IBUG子集上,平均误差为9.15%)。
大家可以到官网地址-数据集,我自己也在百度网盘分享了一份。
链接:获取数据集
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~