基于深度多任务学习的人脸标志点检测-相关数据

网友投稿 704 2022-09-04

基于深度多任务学习的人脸标志点检测-相关数据集

基于深度多任务学习的人脸标志点检测-相关数据集

原文:

Facial Landmark Detection by Deep Multi-task Learning

Facial landmark detection of face alignment has long been impeded by the problems of occlusion and pose variation. Instead of treating the detection task as a single and independent problem, we investigate the possibility of improving detection robustness through multi-task learning. Specifically, we wish to optimize facial landmark detection together with heterogeneous but subtly correlated tasks, e.g., head pose estimation and facial attribute inference. This is non-trivial since different tasks have different learning difficulties and convergence rates. To address this problem, we formulate a novel tasks-constrained deep model, with task-wise early stopping to facilitate learning convergence. Extensive evaluations show that the proposed task-constrained learning (i) outperforms existing methods, especially in dealing with faces with severe occlusion and pose variation, and (ii) reduces model complexity drastically compared to the state-of-the-art method based on cascaded deep model.

We also extend this method to handle more landmark points (68 points instead of 5 major facial points) without either redesigning the deep model or involving significant increase in run time cost. This is made possible by transferring the learned 5-point model to the desired facial landmark configuration, through model fine-tuning with dense landmark annotations. Our new model achieves the state-of-the-art result on the 300-W benchmark dataset (mean error of 9.15% on the challenging IBUG subset).

译:

基于深度多任务学习的人脸标志点检测

长期以来,由于遮挡和姿态变化等问题,人脸定位中的标志点检测一直受到阻碍。我们研究了通过多任务学习提高检测鲁棒性的可能性,而不是将检测任务看作一个单独的独立问题。具体地说,我们希望将面部标志点检测与异构但微妙相关的任务(如头部姿势估计和面部属性推断)一起优化。这是非常重要的,因为不同的任务有不同的学习困难和收敛速度。为了解决这一问题,我们提出了一个新的任务约束深度模型,通过任务提前停止来促进学习收敛。大量的实验结果表明,本文提出的任务约束学习(i)优于现有的方法,尤其是在处理严重遮挡和姿态变化的人脸时;(ii)与基于级联深层模型的最新方法相比,显著降低了模型复杂度。

我们还扩展了这种方法来处理更多的地标点(68点而不是5个主要的面部点),而不需要重新设计深度模型,也不需要显著增加运行时间成本。通过使用密集的地标标注对模型进行微调,将所学的5点模型转换为所需的面部地标配置,从而实现这一点。我们的新模型在300-W基准数据集上达到了最先进的结果(在具有挑战性的IBUG子集上,平均误差为9.15%)。

大家可以到官网地址-数据集,我自己也在百度网盘分享了一份。

链接:​​获取数据集​​

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:The BioID Face Database
下一篇:MySQL 每秒 570000 的写入,如何实现?(mysql密码忘记了怎么办)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~