springboot中@Async默认线程池导致OOM问题

网友投稿 638 2023-05-31

springboot中@Async默认线程池导致OOM问题

springboot中@Async默认线程池导致OOM问题

前言:

1.最近项目上在测试人员压测过程中发现了OOM问题,项目使用springboot搭建项目工程,通过查看日志中包含信息:unable to create new native thread

内存溢出的三种类型:

1.第一种OutOfMemoryError: PermGen space,发生这种问题的原意是程序中使用了大量的jar或class

2.第二种OutOfMemoryError: java heap space,发生这种问题的原因是java虚拟机创建的对象太多

3.第三种OutOfMemoryError:unable to create new native thread,创建线程数量太多,占用内存过大

初步分析:

1.初步怀疑是线程创建太多导致,使用jstack 线程号 > /tmp/oom.log将应用的线程信息打印出来。查看oom.log,发现大量线程处于Runnable状态,基本可以确认是线程创建太多了。

代码分析:

1.出问题的微服务是日志写库服务,对比日志,锁定在writeLog方法上,wirteLog方法使用spring-@Async注解,写库操作采用的是异步写入方式。

2.之前没有对@Async注解深入研究过,只是知道可以自定义内部线程池,经查看,日志写库服务并未自定义异步配置,使用的是spring-@Async默认异步配置

3.首先简单百度了下,网上提到@Async默认异步配置使用的是SimpleAsyncTaskExecutor,该线程池默认来一个任务创建一个线程,在压测情况下,会有大量写库请求进入日志写库服务,这时http://就会不断创建大量线程,极有可能压爆服务器内存。

借此机会也学习了下SimpleAsyncTaskExecutor源码,总结如下:

1.SimpleAsyncTaskExecutor提供了限流机制,通过concurrencyLimit属性来控制开关,当concurrencyLimit>=0时开启限流机制,默认关闭限流机制即concurrencyLimit=-1,当关闭情况下,会不断创建新的线程来处理任务,核心代码如下:

public void execute(Runnable task, long startTimeout) {

Assert.notNull(task, "Runnable must not be null");

Runnable taskToUse = (this.taskDecorator != null ? this.taskDecorator.decorate(task) : task);

//判断是否开启限流机制

if (isThrottleActive() && startTimeout > TIMEOUT_IMMEDIATE) {

//执行前置操作,进行限流

this.concurrencyThrottle.beforeAccess();

//执行完线程任务,会执行后置操作concurrencyThrottle.afterAccess(),配合进行限流

doExecute(new ConcurrencyThrottlingRunnable(taskToUse));

}

else {

doExecute(taskToUse);

}

}

2.SimpleAsyncTaskExecutor限流实http://现

首先任务进来,会循环判断当前执行线程数是否超过concurrencyLimit,如果超了,则当前线程调用wait方法,释放monitor对象锁,进入等待

protected void beforeAccess() {

if (this.concurrencyLimit == NO_CONCURRENCY) {

throw new IllegalStateException(

"Currently no invocations allowed - concurrency limit set to NO_CONCURRENCY");

}

if (this.concurrencyLimit > 0) {

boolean debug = logger.isDebugEnabled();

synchronized (this.monitor) {

boolean interrupted = false;

while (this.concurrencyCount >= this.concurrencyLimit) {

if (interrupted) {

throw new IllegalStateException("Thread was interrupted while waiting for invocation access, " +

"but concurrency limit still does not allow for entering");

}

if (debug) {

logger.debug("Concurrency count " + this.concurrencyCount +

" has reached limit " + this.concurrencyLimit + " - blocking");

}

try {

this.monitor.wait();

}

catch (InterruptedException ex) {

// Re-interrupt current thread, to allow other threads to react.

Thread.currentThread().interrupt();

interrupted = true;

}

}

if (debug) {

logger.debug("Entering throttle at concurrency count " + this.concurrencyCount);

}

this.concurrencyCount++;

}

}

}

2.SimpleAsyncTaskExecutor限流实现:首先任务进来,会循环判断当前执行线程数是否超过concurrencyLimit,如果超了,则当前线程调用wait方法,释放monitor对象锁,进入等待状态。

protected void beforeAccess() {

if (this.concurrencyLimit == NO_CONCURRENCY) {

throw new IllegalStateException(

"Currently no invocations allowed - concurrency limit set to NO_CONCURRENCY");

}

if (this.concurrencyLimit > 0) {

boolean debug = logger.isDebugEnabled();

synchronized (this.monitor) {

boolean interrupted = false;

while (this.concurrencyCount >= this.concurrencyLimit) {

if (interrupted) {

throw new IllegalStateException("Thread was interrupted while waiting for invocation access, " +

"but concurrency limit still does not allow for entering");

}

if (debug) {

logger.debug("Concurrency count " + this.concurrencyCount +

" has reached limit " + this.concurrencyLimit + " - blocking");

}

try {

this.monitor.wait();

}

catch (InterruptedException ex) {

// Re-interrupt current thread, to allow other threads to react.

Thread.currentThread().interrupt();

interrupted = true;

}

}

if (debug) {

logger.debug("Entering throttle at concurrency count " + this.concurrencyCount);

}

this.concurrencyCount++;

}

}

}

线程任务执行完毕后,当前执行线程数会减一,会调用monitor对象的notify方法,唤醒等待状态下的线程,等待状态下的线程会竞争monitor锁,竞争到,会继续执行线程任务。

protected void afterAccess() {

if (this.concurrencyLimit >= 0) {

synchronized (this.monitor) {

this.heBkbkFKconcurrencyCount--;

if (logger.isDebugEnabled()) {

logger.debug("Returning from throttle at concurrency count " + this.concurrencyCount);

}

this.monitor.notify();

}

}

}

虽然看了源码了解了SimpleAsyncTaskExecutor有限流机制,实践出真知,我们还是测试下:

一、测试未开启限流机制下,我们启动20个线程去调用异步方法,查看Java VisualVM工具如下:

二、测试开启限流机制,开启限流机制的代码如下:

@Configuration

@EnableAsync

public class AsyncCommonConfig extends AsyncConfigurerSupport {

@Override

public Executor getAsyncExecutor() {

SimpleAsyncTaskExecutor executor = new SimpleAsyncTaskExecutor();

//设置允许同时执行的线程数为10

executor.setConcurrencyLimit(10);

return executor;

}

}

同样,我们启动20个线程去调用异步方法,查看Java VisualVM工具如下:

通过上面验证可知:

1.开启限流情况下,能有效控制应用线程数

2.虽然可以有效控制线程数,但执行效率会降低,会出现主线程等待,线程竞争的情况。

3.限流机制适用于任务处理比较快的场景,对于应用处理时间比较慢的场景并不适用。==

最终解决办法:

1.自定义线程池,使用LinkedBlockingQueue阻塞队列来限定线程池的上限

2.定义拒绝策略,如果队列满了,则拒绝处理该任务,打印日志,代码如下:

public class AsyncConfig implements AsyncConfigurer{

private Logger logger = LogManager.getLogger();

@Value("${thread.pool.corePoolSize:10}")

private int corePoolSize;

@Value("${thread.pool.maxPoolSize:20}")

private int maxPoolSize;

@Value("${thread.pool.keepAliveSeconds:4}")

private int keepAliveSeconds;

@Value("${thread.pool.queueCapacity:512}")

private int queueCapacity;

@Override

public Executor getAsyncExecutor() {

ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();

executor.setCorePoolSize(corePoolSize);

executor.setMaxPoolSize(maxPoolSize);

executor.setKeepAliveSeconds(keepAliveSeconds);

executor.setQueueCapacity(queueCapacity);

executor.setRejectedExecutionHandler((Runnable r, ThreadPoolExecutor exe) -> {

logger.warn("当前任务线程池队列已满.");

});

executor.initialize();

return executor;

}

@Override

public AsyncUncaughtExceptionHandler getAsyncUncaughtExceptionHandler() {

return new AsyncUncaughtExceptionHandler() {

@Override

public void handleUncaughtException(Throwable ex , Method method , Object... params) {

logger.error("线程池执行任务发生未知异常.", ex);

}

};

}

}

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:支持跨终端,轻松管理你的生活
下一篇:详解IntelliJ IDEA2020.1和JDK14体验
相关文章

 发表评论

暂时没有评论,来抢沙发吧~