探索微信小程序框架如何助力企业数字化转型与合规运营
397
2023-05-22
eclipse实现ElGamal数字签名
ElGamal数字签名,供大家参考,具体内容如下
一、实验目的
学习ElGamal算法在数字签名方面的使用,掌握教科书版本的ElGamal数字签名算法的编写,掌握ElGamal加密算法和ElGamal数字签名算法的异同。
二、实验要求
1.熟悉ElGamal数字签名算法。
2.掌握如何使用java BigInteger类,简单实现教科书式的ElGamal公私钥签名算法。
3.了解ElGamal加密算法和ElGamal数字签名算法的异同。
三、开发环境
JDK 1.7,Java开发环境(本实验采用Windows+eclipse作为实验环境),要求参与实验的同学按照对称加密提供的方法,提前安装好JDK。
四、实http://验内容
【1-1】ElGamal签名算法的实现
1.实现公私钥生成算法:根据教材,ElGamal公私钥生成算法首选需要选取一个大素数 ,然后选取 作为其生成元。接着随机选取私钥 ,计算 作为其公钥。因此,可写代码如下:
public void initKeys() {
System.out.println("choose a prime p with securitylevel "
+ securitylevel + " , please wait ...");
p = new BigInteger(securitylevel, 100, new Random());
System.out.println("p : " + p);
g = __randomInZp();
System.out.println("g : " + g);
x = __randomInZp();
System.out.println("x : " + x);
y = g.modPow(x, p);
System.out.println("y : " + y);
}
其中,__randomInZp定义如下函数,实现从 中随机选取一个大整数:
public BigInteger __randomInZp() {
BigInteger r = null;
do {
System.out.print(".");
r = new BigInteger(securitylevel, new SecureRandom());
}while(r.compareTo(p) >= 0);
System.out.println(".");
return r;
}
2.实现签名算法:
ElGamal签名算法需要随机选取 ,同时计算
此时, 即为签名。因此,可根据公式,写代码如下:
public BigInteger[] signature(byte m[]) {
BigInteger sig[] = new BigInteger[2];
BigInteger k = __randomPrimeInZp();
sig[0] = g.modPow(k, p);
sig[1] = __hashInZp(m).subtract(x.multiply(sig[0]))
.mod(p.subtract(BigInteger.ONE))
.multiply(k.modInverse(p.subtract(BigInteger.ONE)))
.mod(p.subtract(BigInteger.ONE));
System.out.println("[r,s] = [" + sig[0] + ", " + sig[1] + "]");
return sig;
}
此处的__randomPrimeInZp意为从 中随机选取一个大素数,实现如下:
public BigInteger __randomPrimeInZp() {
BigInteger r = null;
do {
System.out.print(".");
r = new BigInteger(securitylevel, 100, new SecureRandom());
}while(r.compareTo(p) >= 0);
System.out.println(".");
return r;
}
另有一哈希函数,实现如下:
public BigInteger __hashInZp(byte m[]) {
MessageDigest md;
try {
md = MessageDigest.getInstance("SHA-256");
md.update(m);
byte b[] = new byte[33];
System.arraycopy(md.digest(), 0, b, 1, 32);
return new BigInteger(b);
} catch (NoSuchAlgorithmException e) {
System.out.println("this cannot happen.");
}
return null;
}
3.实现验证算法:ElGamal签名验证算法即判定公式 是否成立。因此,可考虑写代码如下:
public boolean verify(byte m[], BigInteger sig[]) {
BigInteger l = y.modPow(sig[0], p)
.multiply(sig[0].modPow(sig[1], p)).mod(p);
BigInteger r = g.modPow(__hashInZp(m), p);
return l.compareTo(r) == 0;
}
4.实现main方法,在main方法中调用算法进行测试:
public static void main(String args[]) {
ElGamalSignatureInstance instance = new ElGamalSignatureInstance();
instance.initKeys();
byte m[] = "my name is ElGamal, my student number is 201300012345.".getBytes();
BigInteger sig[] = instance.signature(m);
System.out.println("Real signature verify result : " + instance.verify(m, sig));
sig[0] = sig[0].add(BigInteger.ONE);
System.out.println("Faked signature verify result : " + instance.verify(m, sig));
}
【1-2】完整参考代码
import java.math.BigInteger;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.util.Random;
public class ElGamalSignatureInstance {
int securitylevel = 1024;
BigInteger p, g, x, y;
public BigInteger __randomInZp() {
BigInteger r = null;
do {
System.out.print(".");
r = new BigInteger(securitylevel, new SecureRandom());
}while(r.compareTo(p) >= 0);
System.out.println(".");
return r;
}
public BigInteger __randomPrimeInZp() {
BigInteger r = null;
do {
System.out.print(".");
r = new BigInteger(securitylevel, 100, new SecureRandom());
}while(r.compareTo(p) >= 0);
System.out.println(".");
return r;
}
public BigInteger __hashInZp(byte m[]) {
MessageDigest md;
try {
md = MessageDigest.getInstance("SHA-256");
md.update(m);
byte b[] = new byte[33];
System.arraycopy(md.digest(), 0, b, 1, 32);
return new BigInteger(b);
} catch (NoSuchAlgorithmException e) {
System.out.println("this cannot happen.");
}
return null;
}
public void initKeys() {
System.out.println("choose a prime p with securitylevel " + securitylevel + " , please wait ...");
p = new BigInteger(securitylevel, 100, new Random());
System.out.println("p : " + p);
g = __randomInZp();
System.out.println("g : " + g);
x = __randomInZp();
System.out.println("x : " + x);
y = g.modPow(x, p);
System.out.println("y : " + y);
}
public BigInteger[] signature(byte m[]) {
BigInteger sig[] = new BigInteger[2];
BigInteger k = __randomPrimeInZp();
sig[0] = g.modPow(k, p);
sig[1] = __hashInZp(m).subtract(x.multiply(sig[0])).mod(p.subtract(BigInteger.ONE))
.multiply(k.modInverse(p.subtract(BigInteger.ONE))).mod(p.subtract(BigInteger.ONE));
System.out.println("[r,s] = [" + sig[0] + ", " + sig[1] + "]");
return sig;
}
public boolean verify(byte m[], BigInteger sig[]) {
BigInteger l = y.modPow(sig[0], p).multiply(sig[0].modPow(sig[1], p)).mod(p);
BigInteger r = g.modPow(__hashInZp(m), p);
return l.compareTo(r) == 0;
}
public static void main(String args[]) {
ElGamalSignatureInstance instance = new ElGamalSignatureInstance();
instance.initKeys();
byte m[] = "my name is ElGamal, my student number is 201300012345.".getBytes();
BigInteger sig[] = instance.signature(m);
System.out.println("Real signature verify result : " + instance.verify(m, sig));
sig[0] = sig[0].add(BigInteger.ONE);
System.out.println("Faked signature verify result : " + instance.verify(m, sig));
}
}
注
由于产生随机大素数的方法(即__randomPrimeInZp)的运行速度受到 值和电脑CPU速度的影响,在某些同学的电脑上可能出现选取参数缓慢的问题。此时可将securitylevel的值调低(缺省1024,可调低到512),即可提高速度。但注意调低securitylevel将会导致安全强度下降。
【1-5】扩展内容:ElGamal加密算法和ElGamal签名算法有何异同?
答:
(1)在产生公私钥方面,二者几乎完全一致。
(2)加密/签名步骤,都需要先选取一个随机数 并计算 作为其密文的第一分量(这也是ElGamal的概率输出的原因所在)。不同点在于,加密算法后续采用 的方式产生密文第二分量,而签名算法采用了 作为其第二分量。
(3)解密/验证方面,解密算法采用 恢复明文,而签名验证算法采用公式 来验证签名是否吻合。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~