深入学习D3JS: d3-path

网友投稿 578 2022-09-01

深入学习D3JS: d3-path

深入学习D3JS: d3-path

function drawCircle(context, radius) { context.moveTo(radius, 0); context.arc(0, 0, radius, 0, 2 * Math.PI);}

使用canvas画图你需要上面的代码,d3.path可以让你在svg上使用类似代码画图。

var context = d3.path();drawCircle(context, 40);pathElement.setAttribute("d", context.toString());

源码如下,讲svg的操作转化为类似canvas,主要是用到一些向量运算。

var pi = Math.PI, tau = 2 * pi, epsilon = 1e-6, tauEpsilon = tau - epsilon;function Path() { this._x0 = this._y0 = // start of current subpath this._x1 = this._y1 = null; // end of current subpath this._ = "";}function path() { return new Path;}Path.prototype = path.prototype = { constructor: Path, moveTo: function(x, y) { this._ += "M" + (this._x0 = this._x1 = +x) + "," + (this._y0 = this._y1 = +y); }, closePath: function() { if (this._x1 !== null) { this._x1 = this._x0, this._y1 = this._y0; this._ += "Z"; } }, lineTo: function(x, y) { this._ += "L" + (this._x1 = +x) + "," + (this._y1 = +y); }, quadraticCurveTo: function(x1, y1, x, y) { this._ += "Q" + (+x1) + "," + (+y1) + "," + (this._x1 = +x) + "," + (this._y1 = +y); }, bezierCurveTo: function(x1, y1, x2, y2, x, y) { this._ += "C" + (+x1) + "," + (+y1) + "," + (+x2) + "," + (+y2) + "," + (this._x1 = +x) + "," + (this._y1 = +y); }, arcTo: function(x1, y1, x2, y2, r) { x1 = +x1, y1 = +y1, x2 = +x2, y2 = +y2, r = +r; var x0 = this._x1, y0 = this._y1, x21 = x2 - x1, y21 = y2 - y1, x01 = x0 - x1, y01 = y0 - y1, l01_2 = x01 * x01 + y01 * y01;//这个值测量的是x0到x1两点之间的距离 // Is the radius negative? Error. if (r < 0) throw new Error("negative radius: " + r); // Is this path empty? Move to (x1,y1). if (this._x1 === null) { this._ += "M" + (this._x1 = x1) + "," + (this._y1 = y1); } // Or, is (x1,y1) coincident with (x0,y0)? Do nothing. else if (!(l01_2 > epsilon)); // Or, are (x0,y0), (x1,y1) and (x2,y2) collinear? // Equivalently, is (x1,y1) coincident with (x2,y2)? // Or, is the radius zero? Line to (x1,y1). //判断两个向量是否共线? else if (!(Math.abs(y01 * x21 - y21 * x01) > epsilon) || !r) { this._ += "L" + (this._x1 = x1) + "," + (this._y1 = y1); } // Otherwise, draw an arc! else { var x20 = x2 - x0, y20 = y2 - y0, l21_2 = x21 * x21 + y21 * y21, l20_2 = x20 * x20 + y20 * y20, l21 = Math.sqrt(l21_2), l01 = Math.sqrt(l01_2), l = r * Math.tan((pi - Math.acos((l21_2 + l01_2 - l20_2) / (2 * l21 * l01))) / 2), t01 = l / l01, t21 = l / l21; // If the start tangent is not coincident with (x0,y0), line to. if (Math.abs(t01 - 1) > epsilon) { this._ += "L" + (x1 + t01 * x01) + "," + (y1 + t01 * y01); } this._ += "A" + r + "," + r + ",0,0," + (+(y01 * x20 > x01 * y20)) + "," + (this._x1 = x1 + t21 * x21) + "," + (this._y1 = y1 + t21 * y21); } }, arc: function(x, y, r, a0, a1, ccw) { x = +x, y = +y, r = +r; var dx = r * Math.cos(a0), dy = r * Math.sin(a0), x0 = x + dx, y0 = y + dy, cw = 1 ^ ccw, da = ccw ? a0 - a1 : a1 - a0; // Is the radius negative? Error. if (r < 0) throw new Error("negative radius: " + r); // Is this path empty? Move to (x0,y0). if (this._x1 === null) { this._ += "M" + x0 + "," + y0; } // Or, is (x0,y0) not coincident with the previous point? Line to (x0,y0). else if (Math.abs(this._x1 - x0) > epsilon || Math.abs(this._y1 - y0) > epsilon) { this._ += "L" + x0 + "," + y0; } // Is this arc empty? We’re done. if (!r) return; // Does the angle go the wrong way? Flip the direction. if (da < 0) da = da % tau + tau; // Is this a complete circle? Draw two arcs to complete the circle. if (da > tauEpsilon) { this._ += "A" + r + "," + r + ",0,1," + cw + "," + (x - dx) + "," + (y - dy) + "A" + r + "," + r + ",0,1," + cw + "," + (this._x1 = x0) + "," + (this._y1 = y0); } // Is this arc non-empty? Draw an arc! else if (da > epsilon) { this._ += "A" + r + "," + r + ",0," + (+(da >= pi)) + "," + cw + "," + (this._x1 = x + r * Math.cos(a1)) + "," + (this._y1 = y + r * Math.sin(a1)); } }, rect: function(x, y, w, h) { this._ += "M" + (this._x0 = this._x1 = +x) + "," + (this._y0 = this._y1 = +y) + "h" + (+w) + "v" + (+h) + "h" + (-w) + "Z"; }, toString: function() { return this._; }};export default path;

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:JS作用域,作用域链
下一篇:php 命名空间(namespace)原理与用法实例小结(php是什么意思)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~