详解SpringCloud的负载均衡

网友投稿 513 2023-02-06

详解SpringCloud的负载均衡

详解SpringCloud的负载均衡

一.什么是负载均衡

负载均衡(Load-balance LB),指的是将用户的请求平摊分配到各个服务器上,从而达到系统的高可用。常见的负载均衡软件有Nginx、lvs等。

二.负载均衡的简单分类

1)集中式LB:集中式负载均衡指的是,在服务消费者(client)和服务提供者(provider)之间提供负载均衡设施,通过该设施把消费者(client)的请求通过某种策略转发给服务提供者(provider),常见的集中式负载均衡是Nginx;

2)进程式LB:将负载均衡的逻辑集成到消费者(client)身上,即消费者从服务注册中心获取服务列表,获知有哪些地址可用,再从这些地址里选出合适的服务器,springCloud的Ribbon就是一个进程式的负载均衡工具。

三.为什么需要做负载均衡

1) 不做负载均衡,可能导致某台机子负荷太重而挂掉;

2)导致资源浪费,比如某些机子收到太多的请求,肯定会导致某些机子收到很少请求甚至收不到请求,这样会浪费系统资源。

四.springCloud如何开启负载均衡

1)在消费者子工程的pom.xml文件的加入相关依赖(https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-ribbon/1.4.7.RELEASE);

org.springframework.cloud

spring-cloud-starter-ribbon

1.4.7.RELEASE

消费者需要获取服务注册中心的注册列表信息,把Eureka的依赖包也放进pom.xml

org.springframework.cloud

spring-cloud-starter-eureka-server

1.4.7.RELEASE

2)在application.yml里配置服务注册中心的信息

在该消费者(client)的application.yml里配置Eureka的信息

#配置Eureka

eureka:

client:

#是否注册自己到服务注册中心,消费者不用提供服务

register-with-eureka: false

service-url:

#访问的url

defaultZone: http://localhost:8002/eureka/

3)在消费者启动类上面加上注解@EnableEurekaClient

@EnableEurekaClient

4)在配置文件的Bean上加上

@Bean

@LoadBalanced

public RestTemplate getRestTemplate(){

return new RestTemplate();

}

五.IRule

什么是IRule

IRule接口代表负载均衡的策略,它的不同的实现类代表不同的策略,它的四种实现类和它的关系如下()

说明一下(idea找Irule的方法:ctrl+n   填入IRule进行查找)

1.RandomRule:表示随机策略,它将从服务清单中随机选择一个服务;

public class RandomRule extends AbstractLoadBalancerRule {

public RandomRule() {

}

@SuppressWarnings({"RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE"})

//传入一个负载均衡器

public Server choose(ILoadBalancer lb, Object key) {

if (lb == null) {

return null;

} else {

Server server = null;

while(server == null) {

if (Thread.interrupted()) {

return null;

}

//通过负载均衡器获取对应的服务列表

List upList = lb.getReachableServers();

//通过负载均衡器获取全部服务列表

List allList = lb.getAllServers();

int serverCount = allList.size();

if (serverCount == 0) {

return null;

}

//获取一个随机数

int index = this.chooseRandomInt(serverCount);

//通过这个随机数从列表里获取服务

server = (Server)upList.get(index);

if (server == null) {

//当前线程转为就绪状态,让出cpu

Thread.yield();

} else {

if (server.isAlive()) {

return server;

}

server = null;

Thread.yield();

}

}

return server;

}

}

小结:通过获取到的所有服务的数量,以这个数量为标准获取一个(0,服务数量)的数作为获取服务实例的下标,从而获取到服务实例

2.ClientConfigEnabledRoundRobinRule:ClientConfigEnabledRoundRobinRule并没有实现什么特殊的处理逻辑,但是他的子类可以实现一些高级策略, 当一些本身的策略无法实现某些需求的时候,它也可以做为父类帮助实现某些策略,一般情况下我们都不会使用它;

public class ClientConfigEnabledRoundRobinRule extends AbstractLoadBalancerRule {

//使用“4”中的RoundRobinRule策略

RoundRobinRule roundRobinRule = new RoundRobinRule();

public ClientConfigEnabledRoundRobinRule() {

}

public void initWithNiwsConfig(IClientConfig clientConfig) {

this.roundRobinRule = new RoundRobinRule();

}

public void setLoadBalancer(ILoadBalancer lb) {

super.setLoadBalancer(lb);

this.roundRobinRule.setLoadBalancer(lb);

}

public Server choose(Object key) {

if (this.roundRobinRule != null) {

return this.roundRobinRule.choose(key);

} else {

throw new IllegalArgumentException("This class has not been initialized with the RoundRobinRule class");

}

}

}

小结:用来作为父类,子类通过实现它来实现一些高级负载均衡策略

1)ClientConfigEnabledRoundRobinRule的子类BestAvailableRule:从该策略的名字就可以知道,bestAvailable的意思是最好获取的,该策略的作用是获取到最空闲的服务实例;

public class BestAvailableRule extends ClientConfigEnabledRoundRobinRule {

//注入负载均衡器,它可以选择服务实例

private LoadBalancerStats loadBalancerStats;

public BestAvailableRule() {

}

public Server choose(Object key) {

//假如负载均衡器实例为空,采用它父类的负载均衡机制,也就是轮询机制,因为它的父类采用的就是轮询机制

if (this.loadBalancerStats == null) {

return super.choose(key);

} else {

//获取所有服务实例并放入列表里

List serverList = this.getLoadBalancer().getAllServers();

//并发量

int minimalConcurrentConnections = 2147483647;

long currentTime = System.currentTimeMillis();

Server chosen = null;

Iterator var7 = serverList.iterator();

//遍历服务列表

while(var7.hasNext()) {

Server server = (Server)var7.next();

ServerStats serverStats = this.loadBalancerStats.getSingleServerStat(server);

//淘汰掉已经负载的服务实例

if (!serverStats.isCircuitBreakerTripped(currentTime)) {

//获得当前服务的请求量(并发量)

int concurrentConnections = serverStats.getActiveRequestsCount(currentTime);

//找出并发了最小的服务

if (concurrentConnections < minimalConcurrentConnections) {

minimalConcurrentConnections = concurrentConnections;

chosen = server;

}

}

}

if (chosen == null) {

return super.choose(key);

} else {

return chosen;

}

}

}

public void setLoadBalancer(ILoadBalancer lb) {

super.setLoadBalancer(lb);

if (lb instanceof AbstractLoadBalancer) {

this.loadBalancerStats = ((AbstractLoadBalancer)lb).getLoadBalancerStats();

}

}

}

小结:ClientConfigEnabledRoundRobinRule子类之一,获取到并发了最少的服务

2)ClientConfigEnabledRoundRobinRule的另一个子类是PredicateBasedRule:通过源码可以看出它是一个抽象类,它的抽象方法getPredicate()返回一个AbstractServerPredicate的实例,然后它的choose方法调用AbstractServerPredicate类的chooseRoundRobinAfterFiltering方法获取具体的Server实例并返回

public abstract class PredicateBasedRule extends ClientConfigEnabledRoundRobinRule {

public PredicateBasedRule() {

}

//获取AbstractServerPredicate对象

public abstract AbstractServerPredicate getPredicate();

public Server choose(Object key) {

//获取当前策略的负载均衡器

ILoadBalancer lb = this.getLoadBalancer();

//通过AbstractServerPredicate的子类过滤掉一部分实例(它实现了Predicate)

//以轮询的方式从过滤后的服务里选择一个服务

Optional server = this.getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key);

return server.isPresAIuTAFent() ? (Server)server.get() : null;

}

}

再看看它的chooseRoundRobinAfterFiltering()方法是如何实现的

public Optional chooseRoundRobinAfterFiltering(List servers, Object loadBalancerKey) {

List eligible = this.getEligibleServers(servers, loadBalancerKey);

return eligible.size() == 0 ? Optional.absent() : Optional.of(eligible.get(this.incrementAndGetModulo(eligible.size())));

}

是这样的,先通过this.getEligibleServers(servers, loadBalancerKey)方法获取一部分实例,然后判断这部分实例是否为空,如果不为空则调用eligible.get(this.incrementAndGetModulo(eligible.size())方法从这部分实例里获取一个服务,点进this.getEligibleServers看

public List getEligibleServers(List servers, Object loadBalancerKey) {

if (loadBalancerKey == null) {

return ImmutableList.copyOf(Iterables.filter(servers, this.getServerOnlyPredicate()));

} else {

List results = Lists.newArrayList();

Iterator var4 = servers.iterator();

while(var4.hasNext()) {

Server server = (Server)var4.next();

//条件满足

if (this.apply(new PredicateKey(loadBalancerKey, server))) {

//添加到集合里

results.add(server);

}

}

return results;

}

}

getEligibleServers方法是根据this.apply(new PredicateKey(loadBalancerKey, server))进行过滤的,如果满足,就添加到返回的集合中。符合什么条件才可以进行过滤呢?可以发现,apply是用this调用的,this指的是AbstractServerPredicate(它的类对象),但是,该类是个抽象类,该实例是不存在的,需要子类去实现,它的子类在这里暂时不是看了,以后有空再深入学习下,它的子类如下,实现哪个子类,就用什么 方式过滤。

再回到chooseRoundRobinAfterFiltering()方法,刚刚说完它通过 getEligibleServers方法过滤并获取到一部分实例,然后再通过this.incrementAndGetModulo(eligible.size())方法从这部分实例里选择一个实例返回,该方法的意思是直接返回下一个整数(索引值),通过该索引值从返回的实例列表中取得Server实例。

private int incrementAndGetModulo(int modulo) {

//当前下标

int current;

//下一个下标

int next;

do {

//获得当前下标值

current = this.nextIndex.get();

next = (current + 1) % modulo;

} while(!this.nextIndex.compareAndSet(current, next) || current >= modulo);

return current;

}

源码撸明白了,再来理一下chooseRoundRobinAfterFiltering()的思路:先通过getEligibleServers()方法获得一部分服务实例,再从这部分服务实例里拿到当前服务实例的下一个服务对象使用。

小结:通过AbstractServerPredicate的chooseRoundRobinAfterFiltering方法进行过滤,获取备选的服务实例清单,然后用线性轮询选择一个实例,是一个抽象类,过滤策略在AbstractServerPredicate的子类中具体实现

3.RetryRule:是对选定的负载均衡策略加上重试机制,即在一个配置好的时间段内(默认500ms),当选择实例不成功,则一直尝试使用subRule的方式选择一个可用的实例,在调用时间到达阀值的时候还没找到可用服务,则返回空,如果没有配置负载策略,默认轮询(即“4”中的轮询);

先贴上它的源码

public class RetryRule extends AbstractLoadBalancerRule {

//从这可以看出,默认使用轮询机制

IRule subRule = new RoundRobinRule();

//500秒的阀值

long maxRetryMillis = 500L;

//无参构造函数

public RetryRule() {

}

//使用轮询机制

public RetryRule(IRule subRule) {

this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule());

}

public RetryRule(IRule subRule, long maxRetryMillishttp://) {

this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule());

this.maxRetryMillis = maxRetryMillis > 0L ? maxRetryMillis : 500L;

}

public void setRule(IRule subRule) {

this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule());

}

public IRule getRule() {

return this.subRule;

}

//设置最大耗时时间(阀值),最多重试多久

public void setMaxRetryMillis(long maxRetryMillis) {

if (maxRetryMillis > 0L) {

this.maxRetryMillis = maxRetryMillis;

} else {

this.maxRetryMillis = 500L;

}

}

//获取重试的时间

public long getMaxRetryMillis() {

return this.maxRetryMillis;

}

//设置负载均衡器,用以获取服务

public void setLoadBalancer(ILoadBalancer lb) {

super.setLoadBalancer(lb);

this.subRule.setLoadBalancer(lb);

}

//通过负载均衡器选择服务

public Server choose(ILoadBalancer lb, Object key) {

long requestTime = System.currentTimeMillis();

//当前时间+阀值 = 截止时间

long deadline = requestTime + this.maxRetryMillis;

Server answer = null;

answer = this.subRule.choose(key);

//获取到服务直接返回

if ((answer == null || !answer.isAlive()) && System.currentTimeMillis() < deadline) {

InterruptTask task = new InterruptTask(deadline - System.currentTimeMillis());

//获取不到服务的情况下反复获取

while(!Thread.interrupted()) {

answer = this.subRule.choose(key);

if (answer != null && answer.isAlive() || System.currentTimeMillis() >= deadline) {

break;

}

Thread.yield();

}

task.cancel();

}

return answer != null && answer.isAlive() ? answer : null;

}

public Server choose(Object key) {

return this.choose(this.getLoadBalancer(), key);

}

public void initWithNiwsConfig(IClientConfig clientConfig) {

}

}

小结:采用RoundRobinRule的选择机制,进行反复尝试,当花费时间超过设置的阈值maxRetryMills时,就返回null

4.RoundRobinRule:轮询策略,它会从服务清单中按照轮询的方式依次选择每个服务实例,它的工作原理是:直接获取下一个可用实例,如果超过十次没有获取到可用的服务实例,则返回空且报出异常信息;

public class RoundRobinRule extends AbstractLoadBalancerRule {

private AtomicInteger nextServerCyclicCounter;

private static final boolean AVAILABLE_ONLY_SERVERS = true;

private static final boolean ALL_SERVERS = false;

private static Logger log = LoggerFactory.getLogger(RoundRobinRule.class);

public RoundRobinRule() {

this.nextServerCyclicCounter = new AtomicInteger(0);

}

public RoundRobinRule(ILoadBalancer lb) {

this();

this.setLoadBalancer(lb);

}

public Server choose(ILoadBalancer lb, Object key) {

if (lb == null) {

log.warn("no load balancer");

return null;

} else {

Server server = null;

int count = 0;

while(true) {

//选择十次,十次都没选到可用服务就返回空

if (server == null && count++ < 10) {

List reachableServers = lb.getReachableServers();

List allServers = lb.getAllServers();

int upCount = reachableServers.size();

int serverCount = allServers.size();

if (upCount != 0 && serverCount != 0) {

int nextServerIndex = this.incrementAndGetModulo(serverCount);

server = (Server)allServers.get(nextServerIndex);

if (server == null) {

Thread.yield();

} else {

if (server.isAlive() && server.isReadyToServe()) {

return server;

}

server = null;

}

continue;

}

log.warn("No up servers available from load balancer: " + lb);

return null;

}

if (count >= 10) {

log.warn("No available alive servers after 10 tries from load balancer: " + lb);

}

return server;

}

}

}

//递增的形式实现轮询

private int incrementAndGetModulo(int modulo) {

int current;

int next;

do {

current = this.nextServerCyclicCounter.get();

next = (current + 1) % modulo;

} while(!this.nextServerCyclicCounter.compareAndSet(current, next));

return next;

}

public Server choose(Object key) {

return this.choose(this.getLoadBalancer(), key);

}

public void initWithNiwsConfig(IClientConfig clientConfig) {

}

}

小结:采用线性轮询机制循环依次选择每个服务实例,直到选择到一个不为空的服务实例或循环次数达到10次

它有个子类WeightedResponseTimeRule,WeightedResponseTimeRule是对RoundRobinRule的优化。WeightedResponseTimeRule在其父类的基础上,增加了定时任务这个功能,通过启动一个定时任务来计算每个服务的权重,然后遍历服务列表选择服务实例,从而达到更加优秀的分配效果。我们这里把这个类分为三部分:定时任务,计算权值,选择服务

1)定时任务

//定时任务

void initialize(ILoadBalancer lb) {

if (this.serverWeightTimer != null) {

this.serverWeightTimer.cancel();

}

this.serverWeightTimer = new Timer("NFLoadBalancer-serverWeightTimer-" + this.name, true);

//开启一个任务,每30秒执行一次

this.serverWeightTimer.schedule(new WeightedResponseTimeRule.DynamicServerWeightTask(), 0L, (long)this.serverWeightTaskTimerInterval);

WeightedResponseTimeRule.ServerWeight sw = new WeightedResponseTimeRule.ServerWeight();

sw.maintainWeights();

Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {

public void run() {

WeightedResponseTimeRule.logger.info("Stopping NFLoadBalancer-serverWeightTimer-" + WeightedResponseTimeRule.this.name);

WeightedResponseTimeRule.this.serverWeightTimer.cancel();

}

}));

}

DynamicServerWeightTask()任务如下:

class DynamicServerWeightTask extends TimerTask {

DynamicServerWeightTask() {

}

public void run() {

WeightedResponseTimeRule.ServerWeight serverWeight = WeightedResponseTimeRule.this.new ServerWeight();

try {

//计算权重

serverWeight.maintainWeights();

} catch (Exception var3) {

WeightedResponseTimeRule.logger.error("Error running DynamicServerWeightTask for {}", WeightedResponseTimeRule.this.name, var3);

}

}

}

小结:调用initialize方法开启定时任务,再在任务里计算服务的权重

2)计算权重:第一步,先算出所有实例的响应时间;第二步,再根据所有实例响应时间,算出每个实例的权重

//用来存储权重

private volatile List accumulatedWeights = new ArrayList();

//内部类

class ServerWeight {

ServerWeight() {

}

//该方法用于计算权重

public void maintainWeights() {

//获取负载均衡器

ILoadBalancer lb = WeightedResponseTimeRule.this.getLoadBalancer();

if (lb != null) {

if (WeightedResponseTimeRule.this.serverWeightAssignmentInProgress.compareAndSet(false, true)) {

try {

WeightedResponseTimeRule.logger.info("Weight adjusting job started");

AbstractLoadBalancer nlb = (AbstractLoadBalancer)lb;

//获得每个服务实例的信息

LoadBalancerStats stats = nlb.getLoadBalancerStats();

if (stats != null) {

//实例的响应时间

double totalResponseTime = 0.0D;

ServerStats ss;

//累加所有实例的响应时间

for(Iterator var6 = nlb.getAllServers().iterator(); var6.hasNext(); totalResponseTime += ss.getResponseTimeAvg()) {

Server server = (Server)var6.next();

ss = stats.getSingleServerStat(server);

}

Double weightSoFar = 0.0D;

List finalWeights = new ArrayList();

Iterator var20 = nlb.getAllServers().iterator();

//计算负载均衡器所有服务的权重,公式是weightSoFar = weightSoFar + weight-实例平均响应时间

while(var20.hasNext()) {

Server serverx = (Server)var20.next();

ServerStats ssx = stats.getSingleServerStat(serverx);

double weight = totalResponseTime - ssx.getResponseTimeAvg();

weightSoFar = weightSoFar + weight;

finalWeights.add(weightSoFar);

}

WeightedResponseTimeRule.this.setWeights(finalWeights);

return;

}

} catch (Exception var16) {

WeightedResponseTimeRule.logger.error("Error calculating server weights", var16);

return;

} finally {

WeightedResponseTimeRule.this.serverWeightAssignmentInProgress.set(false);

}

}

}

}

}

3)选择服务

@SuppressWarnings({"RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE"})

public Server choose(ILoadBalancer lb, Object key) {

if (lb == null) {

return null;

} else {

Server server = null;

while(server == null) {

List currentWeights = this.accumulatedWeights;

if (Thread.interrupted()) {

return null;

}

List allList = lb.getAllServers();

int serverCount = allList.size();

if (serverCount == 0) {

return null;

}

int serverIndex = 0;

double maxTotalWeight = currentWeights.size() == 0 ? 0.0D : (Double)currentWeights.get(currentWeights.size() - 1);

if (maxTotalWeight >= 0.001D && serverCount == currentWeights.size()) {

//生产0到最大权重值的随机数

double randomWeight = this.random.nextDouble() * maxTotalWeight;

int n = 0;

//循环权重区间

for(Iterator var13 = currentWeights.iterator(); var13.hasNext(); ++n) {

//获取到循环的数

Double d = (Double)var13.next();

//假如随机数在这个区间内,就拿该索引d服务列表获取对应的实例

if (d >= randomWeight) {

serverIndex = n;

break;

}

}

server = (Server)allList.get(serverIndex);

} else {

server = super.choose(this.getLoadBalancer(), key);

if (server == null) {

return server;

}

}

if (server == null) {

Thread.yield();

} else {

if (server.isAlive()) {

return server;

}

server = null;

}

}

return server;

}

}

小结:首先生成了一个[0,最大权重值) 区间内的随机数,然后遍历权重列表,假如当前随机数在这个区间内,就通过该下标获得对应的服务。

以上就是详解SpringCloud的负载均衡的详细内容,更多关于SpringCloud 负载均衡的资料请关注我们其它相关文章!

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:已有的springcloud+mybatis项目升级为mybatis
下一篇:Spring中@DependsOn注解的作用及实现原理解析
相关文章

 发表评论

暂时没有评论,来抢沙发吧~