ncnn之八:ncnn量化(post-training quantization)三部曲 - ncnn2int8

网友投稿 1218 2022-08-31

ncnn之八:ncnn量化(post-training quantization)三部曲 - ncnn2int8

ncnn之八:ncnn量化(post-training quantization)三部曲 - ncnn2int8

1 read_calibration_data

读入量化表数据 输入: 张量级量化(tensor-wise), 一个张量指定一个 scale; 权重: 通道级量化 (channel-wise), 为每一个通道(输出通道)指定一个 scale;

1-1 read_int8scale_table

static bool read_int8scale_table(const char* filepath, std::map >& blob_int8scale_table, std::map >& weight_int8scale_table){ blob_int8scale_table.clear(); weight_int8scale_table.clear(); FILE* fp = fopen(filepath, "rb"); if (!fp) { fprintf(stderr, "fopen %s failed\n", filepath); return false; } bool in_scale_vector = false; std::string keystr; std::vector scales; char *line = NULL; char *pch = NULL; size_t len = 0; ssize_t read; while ((read = getline(&line, &len, fp)) != -1) { float scale = 1.f; char key[256]; line[strcspn(line, "\r\n")] = 0; pch = strtok (line, " "); if (pch == NULL) break; bool iskey = 1; while (pch != NULL) { if (iskey) { sscanf(pch, "%255s", key); keystr = key; iskey = 0; } else { sscanf(pch, "%f", &scale); scales.push_back(scale); } pch = strtok (NULL, " "); } // XYZ_param_N pattern if (strstr(keystr.c_str(), "_param_")) { weight_int8scale_table[ keystr ] = scales; } else { blob_int8scale_table[ keystr ] = scales; } keystr.clear(); scales.clear(); } fclose(fp); return true;}

2 NetQuantize

class NetQuantize : public ncnn::Net{public: // 0=fp32 1=fp16 2=int8 int storage_type; std::map > blob_int8scale_table; std::map > weight_int8scale_table; public: int quantize_convolution(); int quantize_convolutiondepthwise(); int quantize_innerproduct();public: int fprintf_param_int_array(int id, const ncnn::Mat& m, FILE* pp); int fprintf_param_float_array(int id, const ncnn::Mat& m, FILE* pp); int fwrite_weight_tag_data(int tag, const ncnn::Mat& data, FILE* bp); int fwrite_weight_data(const ncnn::Mat& data, FILE* bp); int save(const char* parampath, const char* binpath);};

量化的实现非常简单,就是所有数据乘以scale,然后截断成int8

2-1 quantize_convolution

int NetQuantize::quantize_convolution(){ const int layer_count = layers.size(); for (int i=0; itype != "Convolution") continue; // find convolution layer std::map >::iterator iter_data = blob_int8scale_table.find(layers[i]->name); if (iter_data == blob_int8scale_table.end()) continue; char key[256]; sprintf(key, "%s_param_0", layers[i]->name.c_str()); std::map >::iterator iter = weight_int8scale_table.find(key); if (iter == weight_int8scale_table.end()) { fprintf(stderr, "this layer need to be quantized, but no scale param!\n"); return -1; } // Convolution - quantize weight from fp32 to int8 ncnn::Convolution* convolution = (ncnn::Convolution*)layers[i]; std::vector weight_data_int8_scales = iter->second; fprintf(stderr, "quantize_convolution %s\n", convolution->name.c_str()); { ncnn::Mat int8_weight_data(convolution->weight_data_size, (size_t)1u); if (int8_weight_data.empty()) return -100; const int weight_data_size_output = convolution->weight_data_size / convolution->num_output; // quantize weight to int8 for (int n=0; nnum_output; n++) { ncnn::Layer* op = ncnn::create_layer(ncnn::LayerType::Quantize); ncnn::ParamDict pd; pd.set(0, weight_data_int8_scales[n]);// scale op->load_param(pd); ncnn::Option opt; opt.blob_allocator = int8_weight_data.allocator; const ncnn::Mat weight_data_n = convolution->weight_data.range(weight_data_size_output * n, weight_data_size_output); ncnn::Mat int8_weight_data_n = int8_weight_data.range(weight_data_size_output * n, weight_data_size_output); op->forward(weight_data_n, int8_weight_data_n, opt); delete op; } convolution->weight_data = int8_weight_data; } convolution->int8_scale_term = 2; } return 0;}

2-2 quantize_convolutiondepthwise

int NetQuantize::quantize_convolutiondepthwise(){ const int layer_count = layers.size(); for (int i=0; itype != "ConvolutionDepthWise") continue; // find convolutiondepthwise layer std::map >::iterator iter_data = blob_int8scale_table.find(layers[i]->name); if (iter_data == blob_int8scale_table.end()) continue; char key[256]; sprintf(key, "%s_param_0", layers[i]->name.c_str()); std::map >::iterator iter = weight_int8scale_table.find(key); if (iter == weight_int8scale_table.end()) { fprintf(stderr, "this layer need to be quantized, but no scale param!\n"); return -1; } // Convolution - quantize weight from fp32 to int8 ncnn::ConvolutionDepthWise* convdw = (ncnn::ConvolutionDepthWise*)layers[i]; std::vector weight_data_int8_scales = iter->second; fprintf(stderr, "quantize_convolution %s\n", convdw->name.c_str()); { ncnn::Mat int8_weight_data(convdw->weight_data_size, (size_t)1u); if (int8_weight_data.empty()) return -100; const int weight_data_size_output = convdw->weight_data_size / convdw->group; // quantize weight to int8 for (int n=0; ngroup; n++) { ncnn::Layer* op = ncnn::create_layer(ncnn::LayerType::Quantize); ncnn::ParamDict pd; pd.set(0, weight_data_int8_scales[n]);// scale op->load_param(pd); ncnn::Option opt; opt.blob_allocator = int8_weight_data.allocator; const ncnn::Mat weight_data_n = convdw->weight_data.range(weight_data_size_output * n, weight_data_size_output); ncnn::Mat int8_weight_data_n = int8_weight_data.range(weight_data_size_output * n, weight_data_size_output); op->forward(weight_data_n, int8_weight_data_n, opt); delete op; } convdw->weight_data = int8_weight_data; } convdw->int8_scale_term = 1; } return 0;}

2-3 quantize_innerproduct

int NetQuantize::quantize_innerproduct(){ const int layer_count = layers.size(); for (int i=0; itype != "InnerProduct") continue; // find InnerProduct layer std::map >::iterator iter_data = blob_int8scale_table.find(layers[i]->name); if (iter_data == blob_int8scale_table.end()) continue; char key[256]; sprintf(key, "%s_param_0", layers[i]->name.c_str()); std::map >::iterator iter = weight_int8scale_table.find(key); if (iter == weight_int8scale_table.end()) { fprintf(stderr, "this layer need to be quantized, but no scale param!\n"); return -1; } // InnerProduct - quantize weight from fp32 to int8 ncnn::InnerProduct* fc = (ncnn::InnerProduct*)layers[i]; std::vector weight_data_int8_scales = iter->second; fprintf(stderr, "quantize_convolution %s\n", fc->name.c_str()); { ncnn::Mat int8_weight_data(fc->weight_data_size, (size_t)1u); if (int8_weight_data.empty()) return -100; const int weight_data_size_output = fc->weight_data_size / fc->num_output; // quantize weight to int8 for (int n=0; nnum_output; n++) { ncnn::Layer* op = ncnn::create_layer(ncnn::LayerType::Quantize); ncnn::ParamDict pd; pd.set(0, weight_data_int8_scales[n]);// scale op->load_param(pd); ncnn::Option opt; opt.blob_allocator = int8_weight_data.allocator; const ncnn::Mat weight_data_n = fc->weight_data.range(weight_data_size_output * n, weight_data_size_output); ncnn::Mat int8_weight_data_n = int8_weight_data.range(weight_data_size_output * n, weight_data_size_output); op->forward(weight_data_n, int8_weight_data_n, opt); delete op; } fc->weight_data = int8_weight_data; } fc->int8_scale_term = 2; } return 0;}

2-4 save

int NetQuantize::save(const char* parampath, const char* binpath){ FILE* pp = fopen(parampath, "wb"); FILE* bp = fopen(binpath, "wb"); fprintf(pp, "7767517\n"); const int layer_count = layers.size(); int layer_count_fused = 0; std::set blob_names; for (int i=0; itype == "ncnnfused") continue; layer_count_fused++; int bottom_count = layer->bottoms.size(); for (int j=0; jbottoms[j]; blob_names.insert(blobs[bottom_blob_index].name); } int top_count = layer->tops.size(); for (int j=0; jtops[j]; blob_names.insert(blobs[top_blob_index].name); } } int blob_count_fused = blob_names.size(); fprintf(pp, "%d %d\n", layer_count_fused, blob_count_fused); for (int i=0; itype == "ncnnfused") continue; int bottom_count = layer->bottoms.size(); int top_count = layer->tops.size(); fprintf(pp, "%-24s %-24s %d %d", layer->type.c_str(), layer->name.c_str(), bottom_count, top_count); for (int j=0; jbottoms[j]; fprintf(pp, " %s", blobs[bottom_blob_index].name.c_str()); } for (int j=0; jtops[j]; fprintf(pp, " %s", blobs[top_blob_index].name.c_str()); } ncnn::Layer* layer_default = ncnn::create_layer(layer->typeindex); ncnn::ParamDict pd; layer_default->load_param(pd);#define if (layer->type == "BatchNorm") { ncnn::BatchNorm* op = (ncnn::BatchNorm*)layer; ncnn::BatchNorm* op_default = (ncnn::BatchNorm*)layer_default; fprintf_param_value(" 0=%d", channels) fprintf_param_value(" 1=%f", eps) fwrite_weight_data(op->slope_data, bp); fwrite_weight_data(op->mean_data, bp); fwrite_weight_data(op->var_data, bp); fwrite_weight_data(op->bias_data, bp); } else if (layer->type == "Bias") { ncnn::Bias* op = (ncnn::Bias*)layer; ncnn::Bias* op_default = (ncnn::Bias*)layer_default; fprintf_param_value(" 0=%d", bias_data_size) fwrite_weight_data(op->bias_data, bp); } else if (layer->type == "BinaryOp") { ncnn::BinaryOp* op = (ncnn::BinaryOp*)layer; ncnn::BinaryOp* op_default = (ncnn::BinaryOp*)layer_default; fprintf_param_value(" 0=%d", op_type) fprintf_param_value(" 1=%d", with_scalar) fprintf_param_value(" 2=%f", b) } else if (layer->type == "Clip") { ncnn::Clip* op = (ncnn::Clip*)layer; ncnn::Clip* op_default = (ncnn::Clip*)layer_default; fprintf_param_value(" 0=%f", min) fprintf_param_value(" 1=%f", max) } else if (layer->type == "Concat") { ncnn::Concat* op = (ncnn::Concat*)layer; ncnn::Concat* op_default = (ncnn::Concat*)layer_default; fprintf_param_value(" 0=%d", axis) } else if (layer->type == "Convolution") { ncnn::Convolution* op = (ncnn::Convolution*)layer; ncnn::Convolution* op_default = (ncnn::Convolution*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); } fprintf_param_value(" 2=%d", dilation_w) { if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); } fprintf_param_value(" 3=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); } fprintf_param_value(" 4=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); } { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); } fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 8=%d", int8_scale_term) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(0, op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); // write int8_scale data if (op->int8_scale_term) { std::vector weight_int8scale; std::vector blob_int8scale; char key[256]; sprintf(key, "%s_param_0", layer->name.c_str()); if (weight_int8scale_table.find(std::string(key)) != weight_int8scale_table.end()) { weight_int8scale = weight_int8scale_table[std::string(key)]; } if (blob_int8scale_table.find(layer->name) != blob_int8scale_table.end()) { blob_int8scale = blob_int8scale_table[layer->name]; } // write int8_scale data fwrite(weight_int8scale.data(), sizeof(float), weight_int8scale.size(), bp); fwrite(blob_int8scale.data(), sizeof(float), blob_int8scale.size(), bp); } } else if (layer->type == "ConvolutionDepthWise") { ncnn::ConvolutionDepthWise* op = (ncnn::ConvolutionDepthWise*)layer; ncnn::ConvolutionDepthWise* op_default = (ncnn::ConvolutionDepthWise*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); } fprintf_param_value(" 2=%d", dilation_w) { if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); } fprintf_param_value(" 3=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); } fprintf_param_value(" 4=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); } { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); } fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 7=%d", group) fprintf_param_value(" 8=%d", int8_scale_term) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(0, op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); // write int8_scale data if (op->int8_scale_term) { std::vector weight_int8scale; std::vector blob_int8scale; char key[256]; sprintf(key, "%s_param_0", layer->name.c_str()); if (weight_int8scale_table.find(std::string(key)) != weight_int8scale_table.end()) { weight_int8scale = weight_int8scale_table[std::string(key)]; } if (blob_int8scale_table.find(layer->name) != blob_int8scale_table.end()) { blob_int8scale = blob_int8scale_table[layer->name]; } // write int8_scale data fwrite(weight_int8scale.data(), sizeof(float), weight_int8scale.size(), bp); fwrite(blob_int8scale.data(), sizeof(float), blob_int8scale.size(), bp); } } else if (layer->type == "Crop") { ncnn::Crop* op = (ncnn::Crop*)layer; ncnn::Crop* op_default = (ncnn::Crop*)layer_default; fprintf_param_value(" 0=%d", woffset) fprintf_param_value(" 1=%d", hoffset) fprintf_param_value(" 2=%d", coffset) fprintf_param_value(" 3=%d", outw) fprintf_param_value(" 4=%d", outh) fprintf_param_value(" 5=%d", outc) fprintf_param_value(" 6=%d", woffset2) fprintf_param_value(" 7=%d", hoffset2) fprintf_param_value(" 8=%d", coffset2) { if (!op->starts.empty()) fprintf_param_int_array(9, op->starts, pp); } { if (!op->ends.empty()) fprintf_param_int_array(10, op->ends, pp); } { if (!op->axes.empty()) fprintf_param_int_array(11, op->axes, pp); } } else if (layer->type == "Deconvolution") { ncnn::Deconvolution* op = (ncnn::Deconvolution*)layer; ncnn::Deconvolution* op_default = (ncnn::Deconvolution*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); } fprintf_param_value(" 2=%d", dilation_w) { if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); } fprintf_param_value(" 3=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); } fprintf_param_value(" 4=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); } { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); } fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(0, op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); } else if (layer->type == "DeconvolutionDepthWise") { ncnn::DeconvolutionDepthWise* op = (ncnn::DeconvolutionDepthWise*)layer; ncnn::DeconvolutionDepthWise* op_default = (ncnn::DeconvolutionDepthWise*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); } fprintf_param_value(" 2=%d", dilation_w) { if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); } fprintf_param_value(" 3=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); } fprintf_param_value(" 4=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); } { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); } fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 7=%d", group) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(0, op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); } else if (layer->type == "DetectionOutput") { ncnn::DetectionOutput* op = (ncnn::DetectionOutput*)layer; ncnn::DetectionOutput* op_default = (ncnn::DetectionOutput*)layer_default; fprintf_param_value(" 0=%d", num_class) fprintf_param_value(" 1=%f", nms_threshold) fprintf_param_value(" 2=%d", nms_top_k) fprintf_param_value(" 3=%d", keep_top_k) fprintf_param_value(" 4=%f", confidence_threshold) fprintf_param_value(" 5=%f", variances[0]) fprintf_param_value(" 6=%f", variances[1]) fprintf_param_value(" 7=%f", variances[2]) fprintf_param_value(" 8=%f", variances[3]) } else if (layer->type == "Dropout") { ncnn::Dropout* op = (ncnn::Dropout*)layer; ncnn::Dropout* op_default = (ncnn::Dropout*)layer_default; fprintf_param_value(" 0=%f", scale) } else if (layer->type == "Eltwise") { ncnn::Eltwise* op = (ncnn::Eltwise*)layer; ncnn::Eltwise* op_default = (ncnn::Eltwise*)layer_default; fprintf_param_value(" 0=%d", op_type) { if (!op->coeffs.empty()) fprintf_param_float_array(1, op->coeffs, pp); } } else if (layer->type == "ELU") { ncnn::ELU* op = (ncnn::ELU*)layer; ncnn::ELU* op_default = (ncnn::ELU*)layer_default; fprintf_param_value(" 0=%f", alpha) } else if (layer->type == "Exp") { ncnn::Exp* op = (ncnn::Exp*)layer; ncnn::Exp* op_default = (ncnn::Exp*)layer_default; fprintf_param_value(" 0=%f", base) fprintf_param_value(" 1=%f", scale) fprintf_param_value(" 2=%f", shift) } else if (layer->type == "InnerProduct") { ncnn::InnerProduct* op = (ncnn::InnerProduct*)layer; ncnn::InnerProduct* op_default = (ncnn::InnerProduct*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", bias_term) fprintf_param_value(" 2=%d", weight_data_size) fprintf_param_value(" 8=%d", int8_scale_term) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(0, op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); // write int8_scale data if (op->int8_scale_term) { std::vector weight_int8scale; std::vector blob_int8scale; char key[256]; sprintf(key, "%s_param_0", layer->name.c_str()); if (weight_int8scale_table.find(std::string(key)) != weight_int8scale_table.end()) { weight_int8scale = weight_int8scale_table[std::string(key)]; } if (blob_int8scale_table.find(layer->name) != blob_int8scale_table.end()) { blob_int8scale = blob_int8scale_table[layer->name]; } // write int8_scale data fwrite(weight_int8scale.data(), sizeof(float), weight_int8scale.size(), bp); fwrite(blob_int8scale.data(), sizeof(float), blob_int8scale.size(), bp); } } else if (layer->type == "Input") { ncnn::Input* op = (ncnn::Input*)layer; ncnn::Input* op_default = (ncnn::Input*)layer_default; fprintf_param_value(" 0=%d", w) fprintf_param_value(" 1=%d", h) fprintf_param_value(" 2=%d", c) } else if (layer->type == "InstanceNorm") { ncnn::InstanceNorm* op = (ncnn::InstanceNorm*)layer; ncnn::InstanceNorm* op_default = (ncnn::InstanceNorm*)layer_default; fprintf_param_value(" 0=%d", channels) fprintf_param_value(" 1=%f", eps) } else if (layer->type == "Interp") { ncnn::Interp* op = (ncnn::Interp*)layer; ncnn::Interp* op_default = (ncnn::Interp*)layer_default; fprintf_param_value(" 0=%d", resize_type) fprintf_param_value(" 1=%f", height_scale) fprintf_param_value(" 2=%f", width_scale) fprintf_param_value(" 3=%d", output_height) fprintf_param_value(" 4=%d", output_width) } else if (layer->type == "Log") { ncnn::Log* op = (ncnn::Log*)layer; ncnn::Log* op_default = (ncnn::Log*)layer_default; fprintf_param_value(" 0=%f", base) fprintf_param_value(" 1=%f", scale) fprintf_param_value(" 2=%f", shift) } else if (layer->type == "LRN") { ncnn::LRN* op = (ncnn::LRN*)layer; ncnn::LRN* op_default = (ncnn::LRN*)layer_default; fprintf_param_value(" 0=%d", region_type) fprintf_param_value(" 1=%d", local_size) fprintf_param_value(" 2=%f", alpha) fprintf_param_value(" 3=%f", beta) fprintf_param_value(" 4=%f", bias) } else if (layer->type == "MemoryData") { ncnn::MemoryData* op = (ncnn::MemoryData*)layer; ncnn::MemoryData* op_default = (ncnn::MemoryData*)layer_default; fprintf_param_value(" 0=%d", w) fprintf_param_value(" 1=%d", h) fprintf_param_value(" 2=%d", c) fwrite_weight_data(op->data, bp); } else if (layer->type == "MVN") { ncnn::MVN* op = (ncnn::MVN*)layer; ncnn::MVN* op_default = (ncnn::MVN*)layer_default; fprintf_param_value(" 0=%d", normalize_variance) fprintf_param_value(" 1=%d", across_channels) fprintf_param_value(" 2=%f", eps) } else if (layer->type == "Normalize") { ncnn::Normalize* op = (ncnn::Normalize*)layer; ncnn::Normalize* op_default = (ncnn::Normalize*)layer_default; fprintf_param_value(" 0=%d", across_spatial) fprintf_param_value(" 1=%d", channel_shared) fprintf_param_value(" 2=%f", eps) fprintf_param_value(" 3=%d", scale_data_size) fprintf_param_value(" 4=%d", across_channel) fwrite_weight_data(op->scale_data, bp); } else if (layer->type == "Padding") { ncnn::Padding* op = (ncnn::Padding*)layer; ncnn::Padding* op_default = (ncnn::Padding*)layer_default; fprintf_param_value(" 0=%d", top) fprintf_param_value(" 1=%d", bottom) fprintf_param_value(" 2=%d", left) fprintf_param_value(" 3=%d", right) fprintf_param_value(" 4=%d", type) fprintf_param_value(" 5=%f", value) } else if (layer->type == "Permute") { ncnn::Permute* op = (ncnn::Permute*)layer; ncnn::Permute* op_default = (ncnn::Permute*)layer_default; fprintf_param_value(" 0=%d", order_type) } else if (layer->type == "Pooling") { ncnn::Pooling* op = (ncnn::Pooling*)layer; ncnn::Pooling* op_default = (ncnn::Pooling*)layer_default; fprintf_param_value(" 0=%d", pooling_type) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); } fprintf_param_value(" 2=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 12=%d", op->stride_h); } fprintf_param_value(" 3=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 13=%d", op->pad_top); } { if (op->pad_right != op->pad_left) fprintf(pp, " 14=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 15=%d", op->pad_bottom); } fprintf_param_value(" 4=%d", global_pooling) fprintf_param_value(" 5=%d", pad_mode) } else if (layer->type == "Power") { ncnn::Power* op = (ncnn::Power*)layer; ncnn::Power* op_default = (ncnn::Power*)layer_default; fprintf_param_value(" 0=%f", power) fprintf_param_value(" 1=%f", scale) fprintf_param_value(" 2=%f", shift) } else if (layer->type == "PReLU") { ncnn::PReLU* op = (ncnn::PReLU*)layer; ncnn::PReLU* op_default = (ncnn::PReLU*)layer_default; fprintf_param_value(" 0=%d", num_slope) fwrite_weight_data(op->slope_data, bp); } else if (layer->type == "PriorBox") { ncnn::PriorBox* op = (ncnn::PriorBox*)layer; ncnn::PriorBox* op_default = (ncnn::PriorBox*)layer_default; { if (!op->min_sizes.empty()) fprintf_param_float_array(0, op->min_sizes, pp); } { if (!op->max_sizes.empty()) fprintf_param_float_array(1, op->max_sizes, pp); } { if (!op->aspect_ratios.empty()) fprintf_param_float_array(2, op->aspect_ratios, pp); } fprintf_param_value(" 3=%f", variances[0]) fprintf_param_value(" 4=%f", variances[1]) fprintf_param_value(" 5=%f", variances[2]) fprintf_param_value(" 6=%f", variances[3]) fprintf_param_value(" 7=%d", flip) fprintf_param_value(" 8=%d", clip) fprintf_param_value(" 9=%d", image_width) fprintf_param_value(" 10=%d", image_height) fprintf_param_value(" 11=%f", step_width) fprintf_param_value(" 12=%f", step_height) fprintf_param_value(" 13=%f", offset) } else if (layer->type == "Proposal") { ncnn::Proposal* op = (ncnn::Proposal*)layer; ncnn::Proposal* op_default = (ncnn::Proposal*)layer_default; fprintf_param_value(" 0=%d", feat_stride) fprintf_param_value(" 1=%d", base_size) fprintf_param_value(" 2=%d", pre_nms_topN) fprintf_param_value(" 3=%d", after_nms_topN) fprintf_param_value(" 4=%f", nms_thresh) fprintf_param_value(" 5=%d", min_size) } else if (layer->type == "PSROIPooling") { ncnn::PSROIPooling* op = (ncnn::PSROIPooling*)layer; ncnn::PSROIPooling* op_default = (ncnn::PSROIPooling*)layer_default; fprintf_param_value(" 0=%d", pooled_width) fprintf_param_value(" 1=%d", pooled_height) fprintf_param_value(" 2=%f", spatial_scale) fprintf_param_value(" 3=%d", output_dim) } else if (layer->type == "Quantize") { ncnn::Quantize* op = (ncnn::Quantize*)layer; ncnn::Quantize* op_default = (ncnn::Quantize*)layer_default; fprintf_param_value(" 0=%f", scale) } else if (layer->type == "Reduction") { ncnn::Reduction* op = (ncnn::Reduction*)layer; ncnn::Reduction* op_default = (ncnn::Reduction*)layer_default; fprintf_param_value(" 0=%d", operation) fprintf_param_value(" 1=%d", reduce_all) fprintf_param_value(" 2=%f", coeff) { if (!op->axes.empty()) fprintf_param_int_array(3, op->axes, pp); } fprintf_param_value(" 4=%d", keepdims) } else if (layer->type == "ReLU") { ncnn::ReLU* op = (ncnn::ReLU*)layer; ncnn::ReLU* op_default = (ncnn::ReLU*)layer_default; fprintf_param_value(" 0=%f", slope) } else if (layer->type == "Reorg") { ncnn::Reorg* op = (ncnn::Reorg*)layer; ncnn::Reorg* op_default = (ncnn::Reorg*)layer_default; fprintf_param_value(" 0=%d", stride) } else if (layer->type == "Requantize") { ncnn::Requantize* op = (ncnn::Requantize*)layer; ncnn::Requantize* op_default = (ncnn::Requantize*)layer_default; fprintf_param_value(" 0=%f", scale_in) fprintf_param_value(" 1=%f", scale_out) fprintf_param_value(" 2=%d", bias_term) fprintf_param_value(" 3=%d", bias_data_size) fprintf_param_value(" 4=%d", fusion_relu) } else if (layer->type == "Reshape") { ncnn::Reshape* op = (ncnn::Reshape*)layer; ncnn::Reshape* op_default = (ncnn::Reshape*)layer_default; fprintf_param_value(" 0=%d", w) fprintf_param_value(" 1=%d", h) fprintf_param_value(" 2=%d", c) fprintf_param_value(" 3=%d", permute) } else if (layer->type == "ROIAlign") { ncnn::ROIAlign* op = (ncnn::ROIAlign*)layer; ncnn::ROIAlign* op_default = (ncnn::ROIAlign*)layer_default; fprintf_param_value(" 0=%d", pooled_width) fprintf_param_value(" 1=%d", pooled_height) fprintf_param_value(" 2=%f", spatial_scale) } else if (layer->type == "ROIPooling") { ncnn::ROIPooling* op = (ncnn::ROIPooling*)layer; ncnn::ROIPooling* op_default = (ncnn::ROIPooling*)layer_default; fprintf_param_value(" 0=%d", pooled_width) fprintf_param_value(" 1=%d", pooled_height) fprintf_param_value(" 2=%f", spatial_scale) } else if (layer->type == "Scale") { ncnn::Scale* op = (ncnn::Scale*)layer; ncnn::Scale* op_default = (ncnn::Scale*)layer_default; fprintf_param_value(" 0=%d", scale_data_size) fprintf_param_value(" 1=%d", bias_term) fwrite_weight_data(op->scale_data, bp); fwrite_weight_data(op->bias_data, bp); } else if (layer->type == "ShuffleChannel") { ncnn::ShuffleChannel* op = (ncnn::ShuffleChannel*)layer; ncnn::ShuffleChannel* op_default = (ncnn::ShuffleChannel*)layer_default; fprintf_param_value(" 0=%d", group) } else if (layer->type == "Slice") { ncnn::Slice* op = (ncnn::Slice*)layer; ncnn::Slice* op_default = (ncnn::Slice*)layer_default; { if (!op->slices.empty()) fprintf_param_int_array(0, op->slices, pp); } fprintf_param_value(" 1=%d", axis) } else if (layer->type == "Softmax") { ncnn::Softmax* op = (ncnn::Softmax*)layer; ncnn::Softmax* op_default = (ncnn::Softmax*)layer_default; fprintf_param_value(" 0=%d", axis) // HACK if (op->axis != 0) { int fixbug0 = 1; fprintf(pp, " 1=%d", fixbug0); } } else if (layer->type == "Threshold") { ncnn::Threshold* op = (ncnn::Threshold*)layer; ncnn::Threshold* op_default = (ncnn::Threshold*)layer_default; fprintf_param_value(" 0=%f", threshold) } else if (layer->type == "UnaryOp") { ncnn::UnaryOp* op = (ncnn::UnaryOp*)layer; ncnn::UnaryOp* op_default = (ncnn::UnaryOp*)layer_default; fprintf_param_value(" 0=%d", op_type) } else if (layer->type == "YoloDetectionOutput") { ncnn::YoloDetectionOutput* op = (ncnn::YoloDetectionOutput*)layer; ncnn::YoloDetectionOutput* op_default = (ncnn::YoloDetectionOutput*)layer_default; fprintf_param_value(" 0=%d", num_class) fprintf_param_value(" 1=%d", num_box) fprintf_param_value(" 2=%f", confidence_threshold) fprintf_param_value(" 3=%f", nms_threshold) { if (!op->biases.empty()) fprintf_param_float_array(4, op->biases, pp); } } else if (layer->type == "Yolov3DetectionOutput") { ncnn::Yolov3DetectionOutput* op = (ncnn::Yolov3DetectionOutput*)layer; ncnn::Yolov3DetectionOutput* op_default = (ncnn::Yolov3DetectionOutput*)layer_default; fprintf_param_value(" 0=%d", num_class) fprintf_param_value(" 1=%d", num_box) fprintf_param_value(" 2=%f", confidence_threshold) fprintf_param_value(" 3=%f", nms_threshold) { if (!op->biases.empty()) fprintf_param_float_array(4, op->biases, pp); } { if (!op->mask.empty()) fprintf_param_int_array(5, op->mask, pp); } { if (!op->anchors_scale.empty()) fprintf_param_float_array(6, op->anchors_scale, pp); } }#undef fprintf(pp, "\n"); delete layer_default; } fclose(pp); fclose(bp); return 0;}

参考资料 1 ​​​ncnn​​​ 2 ​​​NCNN Conv量化详解(一)​​​ 3 ​​​NCNN量化详解(二)​​ https://zhuanlan.zhihu.com/p/72375164

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:PyTorch实现的DenseNet
下一篇:Go语言很好很强大,但我有几个问题想吐槽(go语言的坑)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~