程序生态与遥感应用研究(遥感生态学)

网友投稿 552 2023-01-06

本篇文章给大家谈谈小程序生态与遥感应用研究,以及遥感生态学对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享小程序生态与遥感应用研究的知识,其中也会对遥感生态学进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

遥感方法应用研究和有效性评价

(一)遥感工作方法及工作层次概述

本次遥感地质研究工作区主要是凤-太矿集区。工作方法为:充分应用不同遥感数据源进行遥感数字图像处理、遥感地质解译、遥感蚀变信息提取、遥感信息小程序生态与遥感应用研究的GIS技术分析等; 通过矿集区1:5万层次、矿区1:1万层次小程序生态与遥感应用研究的研究工作,总结研究区域铅锌矿及金矿等典型矿床的的遥感标志特征,建立遥感找矿模型。

矿集区1:5万层次遥感工作采用了光谱分辨率较高的日本Aster数据,对凤-太矿集区进行了遥感图像处理、遥感地质解译及近矿围岩蚀变遥感信息提取等工作。技术重点是解决多光谱数据的彩色合成及融合问题,充分利用Aster多光谱数据的光谱特征准确提取与矿有关的弱矿化蚀变以及使用GIS对遥感信息进行分析。

1:1万层次遥感工作采用地面分辨率较高的美国IKONOS卫星数据,对包括八方山铅锌矿、八卦庙金矿等在内的100km2范围的遥感影像进行了处理,同时进行了地质解译分析,并在该层次上从遥感角度对该区的铅锌矿找矿、金矿找矿提出了建议。技术难点是高分辨率遥感数据的处理、数据融合及大比例尺遥感图像的制作,以及大比例尺遥感图像中微观地质因素的解译。

(二)凤-太矿集区1:5万层次遥感方法应用研究

1.数据概况

1:5万层次遥感工作采用日本Aster数据,该数据具有3个15m分辨率的可见光近红外波段、6个30m分辨率的短波红外波段及5个90m分辨率的热红外波段,单景面积60×60km2。与常用的TM/ETM数据相比,在地面分辨率和光谱分辨方面有很大的提高。特别是短波红外波段ETM的两个波段被分为6个波段,理论上对羟基蚀变矿物的识别程度有了很大的提高(表4-17)。

表4-17 Aster数据与ETM数据光谱分辨率及地面分辨率对比

2.图像处理

图像处理在PCI geomatic 10.0及ENVI 4.0两个专业遥感软件平台上进行。工作区使用的数据时相为2004年4月19日,该时相无雪无云,植被覆盖相当少,数据质量总体良好。工作区成图范围为:106°27′52″~107°04′05″E,33°45′40″~34°01′36″N。

图像处理过程经过图像校正、图像增强、彩色合成、数据融合等过程,其中,图像校正使用1:5万地形图进行校正; 图像增强主要进行了对比度扩展,使用适应性拉升对直方图进行了扩展; 彩色合成及数据融合方案经对数据各种统计参数的分析及不同方案的反复对比,最终选择了4(R)+8(G)+2(B)与2波段融合的方案,融合后图像分辨率提高为15m,并保留了假彩色合成的色彩(图4-36)。

图4-36 凤-太矿集区Aster遥感影像图

图4-37 银母寺铅锌矿床不同彩色合成方案效果对比

不同合成方案及融合效果对比见图4-37(以银母寺铅锌矿区为例)。由图4-37可以看出,4(R)+8(G)+2(B)与2波段融合的方案在色彩及信息量上是最佳的; 完全使用最高分辨率的123波段进行合成,图像分辨率最高但色彩信息量很差; 随着高分辨率波段在彩色合成中的减少,图像分辨率下降; 融合可以提高图像分辨率,同时保持较好的色彩信息。

3.地质解译

(1)线性构造解译

线性构造包括断裂构造和线性影像体,断裂构造在影像上具有明显的构造标志,如断层崖、连续直线状三角面、水系突然转折或分叉的连线、两侧影纹图案截然突变的界线等; 线性影像体指影像中直线状展布的线状要素,多数情况下为构造信息的反映。遥感构造的解译以图像目视解译为主,必要时辅以图像处理手段,如以定向滤波、比值分析等来突出地貌上的线性影像。

凤-太矿集区遥感线性构造比较发育,规模、性质不同,影像特征有所不同,根据构造规模及影像特点可以划分为4级。

1)一级遥感断裂:一级遥感断裂为区域性断裂,如北部的唐藏-板房子断裂(图4-38),该断裂构造控制着凤-太矿集区的北边界。遥感影像中断裂构造标志清楚,两侧岩石地层差异大,影像纹形、色调也有明显差别。

图4-38 唐藏-板房子断裂典型遥感影像

2)二级遥感断裂:二级遥感断裂主要为泥盆系地层中岩性软、硬接触面发育的走向断层,断裂大致平行,呈NWW向至近EW向展布,对泥盆系构造格架起着控制作用。这类遥感构造规模相对较大,两侧岩性差异比较清楚,如小南沟-磨房沟遥感断裂、碾子坪-石垭子遥感断裂(图4-39)。

3)三级遥感断裂:三级遥感断裂多为线性构造,数量比较多,规模比较小,主要有两组:一是斜切地层的NE向断裂,多具右行剪切性质; 二是层间断裂,与地层线一致图(4-40)。

图4-39 碾子坪-石垭子二级断裂遥感影像(局部)

图4-40 三级断裂遥感影像

4)NE向节理群带:凤-太矿集区不均匀地发育有一组NE向密集遥感线列影像群带(图4-41),实地验证为节理带,这组构造对金矿化富集起着积极作用。

(2)环形构造解译

环形构造指成因与地质构造有关的由弧形或环形影纹构成的环状影像体,区内共解译出环形构造与环形构造影像6个。综合地质、物探、化探资料分析,其中图幅内规模最大的环形构造即王家庄-坪坎环形构造,其可能为稳定基底型环形构造,地表东西长约38km,南北最宽22km,为长轴近东西向的椭圆状,环形体内外影像在影纹、水系格局等方面存在明显的差异,代表着泥盆系基底同生沉积构造; 图幅西部凤县环形影像解译为断裂交汇型环形构造,其环形体由弧状水系与山脊构成,内部呈正地形,纹形杂乱,色调深浅不均,环内有NE向和NW向两组断裂交汇。此外,还有一些环形构造,目前其性质不能判明。

(3)褶皱构造解译

凤-太矿集区总体呈现为一个由中泥盆统为翼,上泥盆统为核,走向NWW—近EW的复式向斜构造,在全区卫星图像及岩性解译图上可以看出。另外,以中泥盆统古道岭组灰岩为核、星红铺组千枚岩为两翼的地层又构成若干次级背斜以及短轴背斜。由于南北向构造挤压强烈,背斜构造多呈紧密线型,遥感影像十分明显(图4-42)。这类次级背斜构造的倾伏端或两翼往往是铅锌矿定位的有利构造部位。

图4-41 北东向节理群带遥感影像

图4-42 背斜构造遥感影像

(4)地层(岩性)解译

岩性、矿物组合的不同及岩石结构的差异都会在波谱特征上显示出变化,在地貌上反映为不同的影像结构及不同的色调和纹理特征。凤-太矿集区解译、划分出以下遥感岩石组合单元:

1)第四系松散堆积物:彩色图像上呈淡青色、细斑点状图案,人文活动形迹清楚,主要分布于嘉陵江、安河两侧。

2)下白垩统东河群灰绿色砂砾岩:遥感影像上分布在中低山或山前坡地,彩色合成图像上呈浅棕色间白色斑块。

3)侏罗系泥岩、粉砂岩、砂岩:彩色合成影像上为浅棕红色,地貌相对比较平坦。

4)下三叠统任家沟组粉砂岩、薄层灰岩:影像上为规模较大的山体,水系为对称枝状或弧状。

5)下三叠统西坡组薄层灰岩夹钙质粉砂岩:影像上为较大山体,水系对称,排列整齐,具较宽的V型谷。

6)中下二叠统十里墩组炭质砂质板岩、长石砂岩、砂砾岩:影像特征纹理比较细腻,冲沟多与地层走向一致。

7)中石炭统灰岩、泥灰岩、灰质板岩:影像显示深暗色带,高山地形,多为桌状山、条状山或条块山。

8)上泥盆统铁山组厚—薄层灰岩:影像上显示山体陡峻,水系多为Y状分岔,或水系与山脊组合成“搓板”状。

9)上泥盆统九里坪组上段砂质板岩、砂质灰岩:高山地貌,砂质灰岩在彩色合成图像上呈绿色条带。

10)上泥盆统九里坪组下段细砂岩夹千枚岩:影像上水系短小,似平行排列。

11)中泥盆统星红铺组钙质千枚岩夹薄层泥质灰岩、砂质灰岩:影像上水系发育,细而密集,呈线状影纹,较乱,无规则,可见近EW向层结构纹。

12)中泥盆统古道岭组上段灰岩:影像上地貌显示为陡立山峰、棱状山脊、直线状水系、V型谷,冲沟短而直。影纹呈栅状、梳状。

13)中泥盆统古道岭组下段粉砂岩、砂质钙质千枚岩:影像上地貌显示为高山、弯曲状棱形山脊,局部可见分支状,树枝状、直线状水系,沟谷相对开阔,冲沟不发育,影像上影纹为细线状。

14)花岗岩组:岩基呈粗大的树枝状纹形图案,色调较深,呈暗绿色,以太白岩基为特征; 小花岗岩体纹形较细,色调较浅。

15)花岗闪长岩:遥感影像上显示典型树枝状水系,宏观影像为块状。

4.遥感异常信息提取

(1)遥感异常信息提取过程

一种地物或岩石在两个波段上的波谱辐射量是有差别的,这就是波谱曲线的坡度,不同地物在同一段曲线上的坡度有大有小,有正有负,比值方法就是增强这种微小的差别,同时还会消除或减弱地形信息的差别。

工作区特征蚀变信息的提取主要是依据数据特征及工作区主要的蚀变特征而进行的。地质工作研究表明,工作区最主要的蚀变特征为“硅化、铁白云石化、碳酸盐化、褐铁矿化”等,硅化信息的提取对于该数据不能完成,因为SiO2在0.52~11.65nm范围内没有特征的吸收显示,因此信息提取主要为白云石化和碳酸盐化的提取。

由图4-43可以看出,白云岩在9波段具有一定的反射,而在8波段具有特征吸收。依据以上特征使用Aster数据B8、B9波段进行比值运算,提取白云岩的特征信息,理论上信息图像中主要集中了白云岩等碳酸盐岩信息。图4-44为遥感地质解译图(附蚀变信息)。

图4-43 凤-太矿集区白云岩PCI光谱曲线

(2)蚀变信息分析

应用MAPGIS中区空间分析功能对遥感蚀变信息的分布特征进行了分析,图4-45a为解译的各种地层在工作区中的面积,图4-45b为遥感蚀变信息在各地层中的分布比例,可以看出星红铺组(D2x)分布的面积最大,其次为古道岭组和九里坪组上段,这也与该地层的岩性一致,同时也表明了蚀变主要分布的地层。图4-45c为信息面积占分布地层面积的比例,可以看出古道岭组中信息比例最高,上、下两段中信息比例占有近40%,表明古道岭组蚀变最为发育,同时也是矿体赋存的主要层位。

图4-44 凤-太矿集区局部遥感地质解译图(附蚀变信息)

遥感蚀变信息与已知矿床(点)叠加的分析表明,凤-太矿集区铅锌矿大多与遥感提取的白云岩化信息有关。如银母寺铅锌矿床、二里河铅锌矿床、铅硐山铅锌矿床等周围都存在遥感蚀变信息。值得注意的是还有许多具有遥感异常的区域目前没有发现矿体,有待进一步工作。

5.遥感地质认识

凤-太矿集区中部地区的王家庄-坪坎环形构造,代表着泥盆系基底性质的同生沉积构造,航磁异常对应显示为均匀低磁特征。该基底型环形构造内泥盆系含矿地层岩相比较稳定,岩浆活动与构造变形相对较弱,控制了主要铅锌多金属矿产的分布,矿床具有热水沉积特征。铅锌多金属矿床的产出与古道岭组灰岩、星红铺组千枚岩岩性接触带关系密切,矿床定位主要受次级背斜构造控制。

总结凤-太矿集区铅锌多金属矿床(点)赋矿空间与遥感岩石地层及遥感构造的关系,得出找矿信息位于:①以灰岩为核的背斜倾伏影像部位; ②灰岩影像分支部位; ③以灰岩为核的背斜轴线转折部位; ④以灰岩为核的短轴背斜及隐伏背斜。

(三)凤-太矿集区1:1万层次遥感方法应用研究

1.数据概况

1:1万层次遥感工作采用美国IKONOS卫星数据,该数据具有4个4.0m分辨率的多光谱波段、1个1.0m分辨率的全色波段。由于地面分辨率大幅提高,该数据在制作大比例尺遥感图像与解译微细构造等方面具有很大的优势。

图4-45 凤-太矿集区遥感蚀变信息分布特征

2.图像处理

工作区使用的数据时相为2008年3月10日,该时相无雪无云,植被覆盖较少,数据质量总体良好。工作区成图范围为:106°49′55″~106°57′37″E,33°53′17″~33°58′02″N。

图像处理过程经过图像校正、图像增强、彩色合成和数据融合等过程。其中图像校正使用1:5万地形图进行校正,比较粗略。图像增强主要进行了对比度扩展,使用适应性拉升对直方图进行了扩展。彩色合成及数据融合方案经对数据各种统计参数的分析及不同方案的反复对比,最终选择了3(R)+2(G)+1(B)与全色波段融合的方案,融合后图像分辨率提高为1m,并保留了假彩色合成的色彩(图4-46,图4-47)。

图4-46 凤-太矿集区八方山及外围地区IKONOS遥感影像

图4-47 二里河铅锌矿床IKONOS遥感影像(局部)

3.地质解译

地质解译通过对八方山-八卦庙地区1:1万IKONOS卫星影像解译分析(图4-48),主要对工作区内的碳酸盐岩分布区及以碳酸盐岩为标志层的次级褶皱构造进行了圈定,同时对区内线形断裂构造及人类采矿形迹进行了解译,结合已有的地质资料初步得出以下认识:

图4-48 八方山-八卦庙地区1:1万遥感地质解译图

(1)遥感构造格局及分区特征

八方山-八卦庙地区遥感线性构造与褶皱构造分布特征显示,该区构造具有SN向分区特点。以黄泥峡沟脑-铜铃沟(银母寺-平坎)断裂为界线,形成两个NWW向展布遥感构造单元。边界断裂略呈弧形展布,走向NWW,断裂规模大、延伸长。影像显示,以该断裂为界,两侧地层褶皱变形特点完全不同。铜铃沟一带出露的酸性脉岩带基本沿分界断裂的北侧分布,研究区处于构造变形强烈的北部区。

北区构造变形十分强烈,以碳酸盐岩为标志的影像层呈分支复合、尖灭再现,形成一系列规模不等的褶皱。单元内部EW向与NWW向断裂比较发育,切割部分褶皱。上述褶皱与断裂构造控制着八方山-八卦庙地区绝大多数的多金属-贵金属矿产产出。南区古道岭组出露连续、稳定,代表碳酸盐岩的影纹规则、连续性好,褶皱构造与断裂构造影像极不发育。南部构造区至今未发现成型矿产。

(2)NNE向—近SN向二次叠加褶皱

凤-太矿集区经历了NWW向区域褶皱之后,受EW向应力作用,西河以西地区又叠加形成了轴向NNE向—近SN向的二次变形褶皱。该褶皱形态宽缓,褶皱轴在铜铃沟—八卦庙一带,遥感影像中可见及一系列同向弯曲、弧顶向南的弧形山脊与水系,同时伴有同向弧形展布的串珠状岩块出露,代表了褶皱的转折部位。根据八卦庙一带灰岩急剧变厚的现象判断,应属宽缓的背斜构造,该地区出现的NNE向密集线列影像应该代表了轴面辟理或者轴部张性断裂群。

(3)EW向断裂控制NW向雁列式背斜

八方山-严家坪-八卦庙EW向断裂切割了泥盆系,构造的局部抬升使断裂南侧古道岭组灰岩为核的次级小背斜沿EW向断裂清楚地显露出地表。背斜北西端被EW向断裂切割,核部灰岩在此出露最宽; 背斜轴向SE倾伏,核部灰岩逐渐尖灭。稍远于该断裂,影像亦显示有多个类似的次级褶皱存在,集中分布于二里河、打柴沟两侧以及手扒崖东侧。据影像特征分析,多属于半隐伏-隐伏的短轴褶皱,埋深不大。

(4)白杨沟-马家渠复式向斜构造

通过以古道岭组灰岩为典型标志层的岩性解译、追踪圈定了白杨沟-长沟-核桃沟复式向斜构造。该复式向斜走向NWW,出露全长约12km。由于NWW向断裂切错,褶皱在银洞沟-核桃沟段位移、破坏,显示不连续(该段褶皱挤压紧闭,两翼灰岩不易区分)。但是该褶皱构造在白杨沟向西的转折端和在西河马家渠向东的转折端显示比较清楚。向斜两翼以古道岭组灰岩为核的次级背斜发育。

(5)特殊影像块体

在南沟的偏沟、八卦庙北等地,古道岭组灰岩的旁侧,出现了几处影像色彩比较特殊的影像块体,比较容易与碳酸盐岩混淆。虽然目前尚不明确遥感波谱所反映的是何种岩石组合或者何种蚀变,值得注意的是,八卦庙北部的特殊影像块体与已知的金矿床空间关系密切,偏沟特殊影像块体附近也有丝毛岭矿化蚀变带出现。经对比同类方法处理的TM图像,与东部的双王金矿钠长角砾岩带影像具有十分相似的特征。

4.找矿预测

研究区铅锌矿的找矿预测工作应紧密围绕所解译确定的以古道岭组为核心的褶皱转折端以及短轴背斜开展,对于所圈定的性质不明的鼻状构造也应列入探查之列。

(1)二里河紧密褶皱群

沿二里河解译出5个连续出现的褶皱构造,由北而南分别为:

1)二-1次级向斜:以条带状灰岩影像为两翼,轴向NWW,可见影像约1000m,在二里河东侧转折。据影像中显示的二里河铅锌矿采矿活动位置,位于二-1向斜南北翼部。

2)二-2鼻状构造:灰岩影像呈锐角状在二里河东拐折,形成一倒Y字形。

3)二-3穿刺背斜:长轴呈NWW走向、等轴双层状显示,出露长约900m。中部为深色影像块体,推测为浅埋藏的灰岩,外侧环绕有浅色环带,可能为蚀变千枚岩。二-3穿刺背斜影像结构特征及规模都与八方山背斜十分相似,其背斜轴向与八方山背斜大致可以对应。

4)二-4次级背斜:轴向NWW,影像显示出露1.3km,背斜西侧转折端清晰,东侧转折部位影纹较杂乱,与二-3穿刺背斜具有相似的双层结构特点。该背斜与Pb异常吻合较好,南侧并有走向一致的TEM异常。

5)二-5短轴向斜:轴向近EW,影像出露约500m,与二-1次级向斜有相同的纹形与色彩特征。

根据影像特征与铅锌矿成矿规律分析认为,二里河紧密褶皱群具有良好的找矿前景,且埋藏较浅。尤其二-3穿刺背斜和二-4次级背斜是寻找八方山式铅锌矿床的良好构造。可在背斜转折端布置浅钻验证。

(2)苏家沟紧密褶皱群

苏家沟解译出4个次级褶皱和鼻状构造,根据不很典型的灰岩影像特征看,褶皱属于隐伏状态,埋藏深度较二里河大。由北向南依次为:

1)苏-1短轴向斜:轴向近EW,出露长度约1km,翼部碳酸盐岩影纹断续,东部转折端比较清楚,西部转折端隐约不明。

2)苏-2不完整次级向斜:轴向近EW,影像出露延伸大于1km,西部被横向断裂切截,东部转折端清楚,向斜翼部碳酸盐岩影纹比较连续。

3)苏-3鼻状构造:轴向近EW,东部发生转折,根据影纹判断,可能为一小背斜的倾伏端。

4)苏-4线状背斜:总体呈NWW向延展,向SE方向倾没,影像显示为比较清楚的灰岩条带。

苏家沟紧密褶皱群区具有面状Zn异常分布,同时苏-1、苏-2和苏-3褶皱出露部位有形态与褶皱相似的TEM异常和热释汞异常。

在该紧密褶皱群(区)同样具有较好的找矿前景,可以作为找矿靶区,建议通过地表工程验证褶皱的存在,并调查含矿性。

(3)打柴沟褶皱群

沿打柴沟两侧断续出露有碳酸盐岩影纹,圈出6个褶皱,根据影像显示,除打-1为一近EW向的鼻状构造(次级向斜)外,其余5条均为NW—NWW向平行、斜列展布的线状背斜,背斜核部灰岩影像断续、隐约,部分地段为推测。

该区具有找矿条件,可以作为找矿预测区。

(4)核桃沟复式向斜的次级背斜部位

遥感解译的核桃沟向斜是以古道岭组灰岩为翼部标志层构成的复式向斜,两翼由碳酸盐岩组成复杂的次级背斜。根据影像所显示的采矿活动形迹,10多个采矿点都与这些次级背斜空间关系密切。

(四)秦岭地区遥感方法应用与解译有效性评价

1)通过对凤-太矿集区1:5万和1:1万遥感影像数据处理和解译,认为在秦岭中高山强覆盖地区开展大比例尺遥感影像解译,Aster数据和IKONOS数据均能够满足分辨率方面的要求。采用彩色合成、数据融合等手段进行数据处理,能够有效地增强数据的可分辨程度。

2)利用Aster数据的多光谱特性在1:5万层次进行特征矿物蚀变信息的提取较ETM/TM数据具有较高的优越性。

3)采用Aster数据开展1:5万层次影像解译,遥感信息提取成果及地质解译与已知地质要素吻合程度较高。

4)利用IKONOS数据开展1:1万层次影像制作,在微观地质单元的解译方面具有明显优势。如对小面积的碳酸盐岩(及其褶皱构造)分布区域以及人类采矿形迹能够达到详细解译的程度,遥感解译与地质吻合程度较高。

总之,在秦岭中高山强覆盖地区使用Aster数据、IKONOS数据进行1:5万和1:1万层次的遥感地质勘查,方法得当,工作有效程度较高。

遥感技术在经济发展中的作用??

一、为国民经济持续稳定发展提供动态基础数据和科学决策依据。
二、为国家重大自然灾害提供准确的监测评估数据以及图像。
三、再生资源的监测、预测和评估。
四、地质矿产资源调查与大型工程评价。
五、天气预报与气候预测。
六、海洋遥感与海洋开发。当前,世界各国纷纷构建天地一体化的对地观测系统,以便实现全球、全天候、全天时的时空数据获取(李德仁,2000)。一系列新型卫星发射上天,是遥感进入21世纪以来取得的长足进展,它使遥感实现实时、动态、定量和定位观测成为可能,卫星应用技术已逐步向产业化方向发展。

(一)遥感数据类型

目前,遥感技术已形成多星种、多传感器、多分辨率共同发展的局面。遥感卫星包括资源卫星、环境卫星、海洋卫星、气象卫星等,所获取的遥感信息具有厘米到千米级的多种尺度,如QUCKBIRD0.61m、IKONOS1m、中华福卫2m、SPOT-5号2.5~5m、ALOS2.5m、IRS-1C5.8m、KOMPSAT6.6m、SPOT-1号、2号10m和20m、EO-1和Landsat-7号15m、CBERS-1号、2号19.5m、Landsat-4号、5号30m、Landsat-1号、2号、3号79m、MODIS250m、NOAA1.1km等多种分辨率。不同空间分辨率的遥感数据对生态环境研究形成了很好的互补,可以在不同空间尺度下开展多方面的应用研究,满足对于不同尺度、不同研究对象发生发展规律研究的需要。丰富的信息源使遥感技术在生态环境研究中扮演着越来越重要的角色,它所具有的高度空间概括能力,有助于对区域的完整了解,而以多光谱观测为主并辅以较高分辨率全色数据的高分辨率卫星,又极大地提升了对地物的识别和分类能力。

应根据研究内容或希望达到的目的有针对性地选择合适的信息源。目前对生态环境研究主要采用光学传感器遥感信息较多,如MODIS、Landsat的TM和ETM、SPOT等。近几年来高光谱卫星和雷达卫星也取得了很大发展,多光谱遥感正在向高光谱遥感、微波遥感向全极化和干涉雷达方向发展(郭华东等,2002)。卫星传感器的光谱分辨率已达到5~6nm。美国1999年发射的EOSTERRA卫星上的中等分辨率成像光谱仪MODIS具有36个波段,2000年发射的EO-1高光谱卫星上的HYPERION具有220个波段,空间分辨率达30m。欧空局的ENVISAT-1卫星上的ASAR传感器可以获取多极化和干涉测量数据。日本的ALOSPALSAR系统能在全球范围内获取极化和干涉雷达数据。利用高光谱、雷达卫星遥感数据进行定量反演是目前遥感的重要发展趋势,但定量遥感还处于起步阶段,主要由于遥感模型缺乏,模型参数提取困难,反演理论与方法的实用化不够,基于先验知识的参数估计所用的数据源不足等(李小文,2005、2006)。

(二)遥感图像处理与信息提取

随着遥感应用日益增长的需要和计算机技术的迅猛发展,图像处理系统作为遥感领域中必不可少的工具,已经形成了很大的市场。图像处理在理论、技术、软件设计以及硬件技术上也都得到了长足的发展。国际上最著名的遥感图像处理软件有ERDAS、PCI和ENVI。ERDASIMAGINE是目前世界上占最大市场份额的专业遥感图像处理软件,由美国ERDAS公司开发。软件大而全,具有光学遥感和微波遥感处理功能以及良好的RS/GIS集成功能,与ARCGIS(ESRIARC系列)融合较好,可以对shapefile、coverage文件直接编辑,具有简单的矢量编辑功能,代表了遥感图像处理系统未来的发展趋势。PCIGeomatics由加拿大PCI公司开发研制,在光学遥感图像镶嵌和色彩匹配处理方面具有独特的优势,可以实现随心所欲的色彩调整,对微波遥感图像具有强大处理功能。ENVI是美国RSI公司开发研制的一套功能齐全的遥感图像处理系统,对高光谱数据具有强大的处理能力,IDL语言为用户提供了良好的二次开发环境。与ERDAS和PCI不支持HDF相比,ENVI可以直接读取TM的HDF文件,其支持的栅格数据和矢量数据格式种类也多于其他软件,但ENVI对光谱图像的色彩匹配能力较弱。随着高分辨率卫星的发展,仅使用图像光谱信息进行分类识别已远远不够,德国DefiniensImaging公司最近新推出了面向对象的遥感图像分类软件ECOGNATION,它不仅考虑地物的光谱特征,还统计地物形状、大小、纹理及相邻关系等,使分类结果更加精确。

生态环境研究中获取的遥感数据,一般都已经进行了初步的辐射纠正,而几何校正等预处理通常要由应用部门根据工作需要自行完成。各种商业软件对图像预处理都有完善的处理功能。

从遥感数据提取专题信息,目前主要有三种方式:目视解译、人机交互和计算机自动分类与提取。目视解译是最直观、最简便的图像信息提取方法。全数字人机交互是利用地理信息系统软件对图像进行解译,该方法的成熟与广泛应用主要是在近10年左右的时间内。上述两种方法都需要投入大量的人力、物力和财力,而且需要投入相对更多的时间,但取得的成果质量相对更高,更便于应用,因而目前仍然被广泛采用。计算机自动分类技术主要立足于遥感信息的定量分析和统计分析,但由于遥感信息传输中的各种干扰造成的偏差,以及不同时空条件下地物遥感信息的差异,会产生空间的不一致性和时间的不一致性,以及同物异谱和同谱异物的现象,自动分类精度较低,难以满足生态环境监测的要求,即使分类结果通过目视判读分析进行改值干预,仍会出现较多问题。现有的自动分类方法基本上都是在较小的区域或精度要求相对较低的区域内实现,很难在大区域而精度要求又较高的工作中实际应用(张增祥,2004)。

(三)遥感动态监测

卫星星座的形成以及传感器的大角度倾斜使空间分辨率时间分辨率显著提高,另一方面,遥感与地理信息系统的结合使遥感实现了真正意义上的实时动态监测。卫星的重访周期从1~50d不等,如SPOT-1号、2号、4号、5号组成SPOT卫星系列,其重访周期为1~26d,Landsat-5、7重访周期为8d,IKONOS为1.5~3d,QUICKBIRD为1~6d。不同卫星适宜的重访周期有利于对生态环境的动态监测和过程分析。只有完整、连续、规范化的大量的时间序列数据,才能够提供研究对象更多的信息,也才能够更全面和更深入地了解研究对象。

国际上利用遥感(RS)技术与地理信息系统(GIS)技术进行了大量卓有成效的资源环境调查、监测工作,如土地利用、土地覆盖、作物估产、植被监测、水土资源调查等。随着国际社会对全球气候变化研究的深入,人们认识到由人类活动所导致的土地利用和土地覆被变化是引起生态环境和气候变化的主要驱动力(王静、张继贤等,2002)。美国于1980~1986年开展了全球性的农业和资源空间遥感调查计划(AGRISTARS),现已建成了集成化的运行系统。近年来完成了美国1∶100万比例尺、1∶25万比例尺和全球范围的土地覆盖数据采集,并利用系统的资源信息对全球性生态环境进行客观评价。欧共体国家为减少各国资源与生态环境部门的重复投资建设,于1991年集中组织启动了“CORIN”计划,建立了一个土地与环境信息系统,通过资源利用及其变化信息对生态环境进行评价,及时反映生态环境变化,并向欧共体国家的资源与环境部门提供公共基础性信息服务。1992年,这些国家又联合起来开展了利用遥感技术监测欧共体国家耕地、农作物变化的大型计划(MARS),每两周向欧共体农业部提供报告,已形成运行能力。加拿大于20世纪90年代基本实现了利用遥感、地理信息系统对全国实现周期性的宏观资源调查、更新与制图,及时对全国生态环境进行评价与预警,并向有关资源与生态环境部门提供公共基础性信息服务,带来了巨大的经济、社会及环境效益。近年来,全球土地利用、土地覆盖研究已经成为国际地圈生物圈计划(IGBP)、人与环境计划(HDP)和世界气候研究计划(WCRP)三个国际组织的核心计划。随着遥感及其应用技术、地理信息系统信息处理及管理技术,特别是近年来全球定位系统(GPS)技术和“3S”一体化的发展,资源环境遥感研究工作正向着快速、精确、实用方向发展(刘纪远,1996)。

我国从20世纪80年代开始,在水资源、土地资源、草场资源、森林资源、环境评价、水土流失、土地退化等方面均应用了遥感动态监测技术(任志远等,2003;张增祥,2004)。从1999年开始,国土资源部采用SPOT、Landsat等卫星数据,辅以其他手段,成功监测了全国66个50万人口以上城市在近两三年间土地利用的变化情况,监测面积达71.4×104km2,为城市建设与发展及时提供了现势的基础资料,并对土地变更调查结果进行了复核,为土地执法检查提供了依据(国土资源部,2000)。总的来说,我国遥感动态监测有以下特点:一是采用的数据分辨率较低,且数据类型单一,监测结果大多是定性说明,离实际生产需求尚有一定距离;二是监测指标单一,绝大多数项目在实施中只选择了一种指标;三是动态监测数据的获取技术相对落后,在利用遥感技术进行专题数据获取或者比对中,自动提取技术应用很少,大多需要大量的人工干预来完成。

国内研建的遥感监测系统为数不多,运行化生态环境遥感监测系统少有,且尚处于初级的尝试阶段。环境遥感监测系统(REMSV1.0)是在国家863计划支持下开发的我国首个面向流域水污染及生态环境遥感监测的业务化环境遥感监测软件系统,用以进行省级环境遥感监测业务化运行示范。它针对我国流域水体污染及典型生态状况监测的实际需求,瞄准环境与灾害监测预报小卫星星座主要传感器(高光谱、红外、可见光)的应用,已在水网密布、流域水环境管理任务十分艰巨的江苏境内的淮河、长江、太湖流域实施了运行示范,取得了较好的效果(张琪等,2006)。系统基于业界主流集成开发工具VISUALC++6.0IDE和Windows系列平台,具有强大的海量高光谱数据处理分析能力、直接面向用户的专业应用模块、一体化的数据处理流程和良好的可交互性。国家海洋环境监测中心建设的海洋赤潮卫星遥感监测系统由卫星图像接收天线、图像接收机、图像处理终端和赤潮卫星遥感信息提取软件组成,系统能够进行NOAAAVHRR、SeaWiFS、MODIS、FY-1C、D和HY-1a卫星数据的读取和处理工作,通过内置的赤潮提取算法自动识别出赤潮发生分布区,并完成赤潮卫星监测通报制作。目前,用于赤潮遥感监测的卫星数据主要有两类:一类是气象卫星类,使用其海表温度数据,探测赤潮的环境温度,可见光波段用于辅助分析;另一类是水色卫星数据,主要使用其可见光数据,建立叶绿素模型,进而探测海洋表面浮游生物。海洋赤潮遥感信息提取软件(V1.0)采用IDL可视化开发语言和VC进行程序开发工作,软件具有数据的输入、预处理、信息提取和赤潮灾害信息产品制作的功能。

中国科学院遥感应用研究所的学科方向

遥感所的学科方向是遥感基础研究、遥感应用研究、遥感应用工程技术研究。
遥感所的研究领域包括多角度遥感、高光谱遥感、微波遥感、全球变化遥感、虚拟地理环境遥感、极地遥感;国土资源遥感、生态环境与资源遥感监测、农业估产遥感、灾害遥感、固体地球与海洋遥感;遥感信息获取、地理信息系统与遥感、空间定位导航与遥感。 根据知识创新工程的实践和遥感信息科学事业发展的需要,形成了以遥感科学国家重点实验室、国家航天局航天遥感论证中心、遥感信息技术部、资源环境遥感应用研究中心、国家遥感应用工程技术研究中心组成的科研机构以及由航空遥感中心、航天数据接收站及网络中心、遥感试验场组成的科技支撑系统。
为了更有利于遥感科研工作的开展,遥感所还与国务院三峡办、国家航天局、军事医学科学院等单位联合建立了数个非法人机构。

环境遥感的应用

目前小程序生态与遥感应用研究,遥感技术在环境科学中主要应用于:
① 大气环境遥感:气象卫星除能提供卫星云图进行天气研究以外,也能对河流排泄的泥沙混浊流和海上漂油进行监测。利用陆地卫星图像可分析工厂的烟尘污染,如在陆地卫星相片上能清楚地看到炭黑厂的黑烟尘。
② 陆地环境遥感:陆地卫星上也反映大面积水质差异变化。因为水的温度、密度、颜色、透明度等的变化往往导致水体反射光能量变化,并在遥感图像上反映出来。如海面受到污染后,被油污覆盖的水面,蒸发受到抑制,温度高于四周水面,在遥感图像上,油污处出现浅色。从卫星相片上可发现大工厂排出的废水有时形成一股污染流,产生周期性的水团运动,形成复杂的水混合和扩散现象。水体受污染后,水的物理、化学和生物特性都有变化。富营养化的水体中某些藻类繁殖生长,这在遥感图像上也能反映出来。工业废水、废渣有时形成地面污染,范围一般较小,从比例尺较大的航空遥感图像可以发现这种现象,并能测出污染的面积,判明污染的特征。比例尺较小的卫星图像有时也能看到地面污染的大致轮廓。天津塘沽区天津碱厂的盐泥堆在卫星图像上是一块光谱反射率很高的白斑。
③ 海洋环境遥感:海洋卫星能够监测海洋表层的许多污染状况。海洋遥感覆盖面积大,具有同时性,能够几乎在同等条件下把获得的资料同船舶测点取样进行对比,能连续、长期而且快速地观测海洋的特点,而且可以得到用船舶观测法不能完整观测到的海洋特征,如海洋表面水温、海流移动、海水分布、波浪、沿海岸泥沙混浊流,以及赤潮、海面油污染等。在进行海洋遥感的同时,仍可利用水面舰船、浮标、海滨研究站,以及采取潜水等方式配合观测,使遥感获得的资料能得到验证和更好的利用。美国1978年 6月发射第一颗海洋卫星,每36小时的观测面覆盖全球海洋面积达95%。海洋卫星装有微波和红外仪器等。海洋遥感所得图像能识别出浮游生物富集区位置、赤潮、各种自然和人为原因造成的混浊流、倾倒的垃圾污物、河口地区及沿海地带的环境特征、海上油污等。
法国、日本、美国都已应用遥感技术研究环境。中国自1980年起开始比较系统地应用遥感技术探测天津市和渤海湾海面的污染特征。
遥感技术在环境领域的应用,目前主要体现在大面积的宏观环境质量和生态监测方面,在大气环境质量、水体环境质量和植被生态监测等方面中都有比较广泛的应用。
大气环境遥感。卫星遥感可在瞬间获取区域地表的大气信息,用于大气污染调查,可避免大气污染时空易变性所产生的误差,并便于动态监测。大气环境遥感主要应用在气溶胶、臭氧、城市热岛、沙尘暴和酸沉降等方面监测研究之中。由于在遥感信息中,大气污染信息是叠加于多变的地面信息之上的弱信息,常规的信息提取方法均不适用,因此多年来该方向的研究进展缓慢。
水环境遥感。水色遥感的目的是试图从传感器接收的辐射中分离出水体后向散射部分,并据此提取水体的组分信息。水环境遥感的任务是通过对遥感影像的分析,获得水体的分布、泥沙、叶绿素、有机质等的状况和水深、水温等要素信息,从而对一个地区的水资源和水环境等做出评价。目前,水质参数的反演研究主要还是基于统计关系的定量反演或定性反映水污染状况,因此,水质参数遥感反演机理的研究有待于加强。
植被生态遥感。植被生态调查是遥感的重要应用领域。植被是环境的重要组成因子,也是反映区域生态环境的最好标志之一,同时也是土壤、水文等要素的解译标志。植被解译的目的是在遥感影像上有效地确定植被的分布、类型、长势等信息,以及对植被的生物量做出估算,因而,它可以为环境监测、生物多样性保护及农业、林业等有关部门提供信息服务。
土壤遥感。土壤是覆盖地球表面的具有农业生产力的资源,它还与很多环境问题相关,比如流域非点源污染、沙尘暴等。地球的岩石圈、水圈、大气圈和生物圈与土壤相互影响、相互作用。土壤遥感的任务是通过遥感影像的解译,识别和划分出土壤类型,制作土壤图,分析土壤的分布规律。
此外,土地覆被/土地利用是人类生存和发展的基础,也是流域(区域)生态环境评价和规划的基础。同时,土地覆被/土地利用变化(LUCC)是目前全球变化研究的重要部分,是全球环境变化的重要研究方向和核心主题。进入20世纪90年代以来,国际上加强小程序生态与遥感应用研究了对LUCC在全球环境变化中的研究工作,使之成为目前全球变化研究的前沿和热点课题。监测和测量土地覆被/土地利用变化过程是进一步分析土地覆被/土地利用变化机制并模拟和评价其不同生态环境影响所不可缺少的基础。
综观遥感技术在环境领域的应用:一方面环境问题为遥感技术的应用提供小程序生态与遥感应用研究了舞台,另一方面环境问题的研究也促进了遥感技术的进一步发展。这两个方面相互促进,使作为环境科学和遥感科学的交叉学科的环境遥感成为研究热点之一。目前,环境遥感已经成为全球性、区域(流域)性乃至城市层次的生态环境问题研究的重要手段,为生态环境规划和环境系统研究提供了强有力的工具。

关于小程序生态与遥感应用研究和遥感生态学的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 小程序生态与遥感应用研究的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于遥感生态学、小程序生态与遥感应用研究的信息别忘了在本站进行查找喔。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:软件开发app公司(软件开发app公司排行)
下一篇:零基础移动应用开发选择题(移动软件开发试题)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~