洞察如何通过小程序容器技术提升游戏推广效果
685
2022-08-29
poj1050 To the Max
( Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array:
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner:
9 2 -4 1 -1 8 and has a sum of 15. Input The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127]. Output Output the sum of the maximal sub-rectangle. Sample Input 4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1
8 0 -2 Sample Output 15 Source Greater New York 2001
n^3的时间内我去处理这个问题 相当于就是最大子段和问题
就是我可以这么去想
| a11 …… a1i ……a1j ……a1n | | a21 …… a2i ……a2j ……a2n | | . . . . . . . | | . . . . . . . | | ar1 …… ari ……arj ……arn | | . . . . . . . | | . . . . . . . | | ak1 …… aki ……akj ……akn | | . . . . . . . | | an1 …… ani ……anj ……ann |
我把每一行中的同一列加起来 就是我可以n^2枚举 我在行中是哪一段 然后加起来变成一维的 然后求一下 最大子段和即可
#include
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~