如何通过一键生成 App 加速企业数字化转型?
1039
2022-12-20
IDEA 开发配置SparkSQL及简单使用案例代码
1.添加依赖
在idea项目的pom.xml中添加依赖。
2.案例代码
package com.zf.bigdata.spark.sql
import orgMALboqgKfb.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
object Spark01_SparkSql_Basic {
def main(args: Array[String]): Unit = {
//创建上下文环境配置对象
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSql")
//创建 SparkSession 对象
val spark = SparkSession.builder().config(sparkConf).getOrCreate()
// DataFrame
val df: DataFrame = spark.read.json("datas/user.json")
//df.show()
// DataFrame => Sql
//df.createOrReplaceTempView("user")
//spark.sql("select * from user").show()
//spark.sql("select age from user").show()
//spark.sql("select avg(age) from user").show()
//DataFrame => Dsl
//如果涉及到转换操作,转换需要引入隐式转换规则,否则无法转换,比如使用$提取数据的值
//spark 不是包名,是上下文环境对象名
import spark.implicits._
//df.select("age","username").show()
//df.select($"age"+1).show()
//df.select('age+1).show()
// DataSet
//val seq = Seq(1,2,3,4)
//val ds: Dataset[Int] = seq.toDS()
// ds.show()
// RDD <=> DataFrame
val rdd = spark.sparkContext.makeRDD(List((1,"张三",10),(2,"李四",20)))
val df1: DataFrame = rdd.toDF("id", "name", "age")
val rdd1: RDD[Row] = df1.rdd
// DataFrame <=> DataSet
val ds: Dataset[User] = df1.as[User]
val df2: DataFrame = ds.toDF()
// RDD <=> DataSet
val ds1: Dataset[User] = rdd.map {
case (id, name, age) => {
User(id, name = name, age = age)
}
}.toDS()
val rdd2: RDD[User] = ds1.rdd
spark.stop()
}
case class User(id:Int,name:String,age:Int)
}
PS:下面看下在IDEA中开发Spark SQL程序
IDEA 中程序的打包和运行方式都和 SparkCore 类似,Maven 依赖中需要添加新的依赖项:
一、指定Schema格式
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.Row
object Demo1 {
def main(args: Array[String]): Unit = {
//使用Spark Session 创建表
val spark = SparkSession.builder().master("local").appName("UnderstandSparkSession").getOrCreate()
//从指定地址创建RDD
val personRDD = spark.sparkContext.textFile("D:\\tmp_files\\student.txt").map(_.split("\t"))
//通过StructType声明Schema
val schema = StructType(
List(
StructField("id", IntegerType),
StructField("name", StringType),
StructField("age", IntegerType)))
//把RDD映射到rowRDD
val rowRDD = personRDD.map(p=>Row(p(0).toInt,p(1),p(2).toInt))
val personDF = spark.createDataFrame(rowRDD, schema)
//注册表
personDF.createOrReplaceTempView("t_person")
//执行SQL
val df = spark.sql("select * from t_person order by age desc limit 4")
df.show()
spark.stop()
}
}
二、使用case class
import org.apache.spark.sql.SparkSession
//使用case class
object Demo2 {
def main(args: Array[String]): Unit = {
//创建SparkSession
val spark = SparkSession.buildMALboqgKfber().master("local").appName("CaseClassDemo").getOrCreate()
//从指定的文件中读取数据,生成对应的RDD
val lineRDD = spark.sparkContext.textFile("D:\\tmp_files\\student.txt").map(_.split("\t"))
//将RDD和case class 关联
val studentRDD = lineRDD.map( x => Student(x(0).toInt,x(1),x(2).toInt))
//生成 DataFrame,通过RDD 生成DF,导入隐式转换
import spark.sqlContext.implicits._
val studentDF = studentRDD.toDF
//注册表 视图
studentDF.createOrReplaceTempView("student")
//执行SQL
spark.sql("select * from student").show()
spark.stop()
}
}
//case class 一定放在外面
case class Student(stuID:Int,stuName:String,stuAge:Int)
三、把数据保存到数据库
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.Row
import java.util.Properties
object Demo3 {
def main(args: Array[String]): Unit = {
//使用Spark Session 创建表
val spark = SparkSession.builder().master("local").appName("UnderstandSparkSession").getOrCreate()
//从指定地址创建RDD
val personRDD = spark.sparkContext.textFile("D:\\tmp_files\\student.txt").map(_.split("\t"))
//通过StructType声明Schema
val schema = StructType(
List(
StructField("id", IntegerType),
StructField("name", StringType),
StructField("age", IntegerType)))
//把RDD映射到rowRDD
val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1), p(2).toInt))
val personDF = spark.createDataFrame(rowRDD, schema)
//注册表
personDF.createOrReplaceTempView("person")
//执行SQL
val df = spark.sql("select * from person ")
//查看SqL内容
//df.show()
//将结果保存到mysql中
val props = new Properties()
props.setProperty("user", "root")
props.setProperty("password", "123456")
props.setProperty("driver", "com.mysql.jdbc.Driver")
df.write.mode("overwrite").jdbc("jdbc:mysql://localhost:3306/company?serverTimezone=UTC&characterEncoding=utf-8", "student", props)
spark.close()
}
}
以上内容转自:
https://blog.csdn-/weixin_43520450/article/details/106093582
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~