8种 骨干级 架构设计模式 图示 分析 优缺点 总结

网友投稿 818 2022-08-28

8种 骨干级 架构设计模式 图示 分析 优缺点 总结

8种 骨干级 架构设计模式 图示 分析 优缺点 总结

8种 骨干级 架构模式 图示 分析 总结

文章目录

​​8种 骨干级 架构模式 图示 分析 总结​​

​​单库单应用模式​​​​内容分发模式​​​​查询分离模式​​​​微服务模式​​​​多级缓存模式​​​​分‍‍‍库分表模式​​​​弹性伸缩模式​​​​多机房模式​​

​​结语​​

作为一名后端研发人员,好的代码架构肯定有章法可循,今天我们就来学习8种常用的架构模式,让你的系统不再是眉毛胡子一把抓。

什么是架构

我想这个问题,十个人回答得有十一个答案,因为另外的那一个是大家妥协的结果。哈哈,我理解,架构就是骨架,如下图所示:

人类的身体的支撑是主要由骨架来承担的,然后是其上的肌肉、神经、皮肤。架构对于软件的重要性不亚于骨架对人类身体的重要性。

什么是设计模式

这个问题我问过的面试者不下于数十次,回答五花八门,在我看来,模式就是经验,设计模式就是设计经验,有了这些经验,我们就能在特定情况下使用特定的设计、组合设计,这样可以大大节省我们的设计时间,提高工作效率。作为一个工作10年以上的老码农,经历的系统架构设计也算不少,接下来,我会把工作中用到的一些架构方面的设计模式分享给大家,望大家少走弯路。总体而言,共有八种,分别是:

单库单应用模式:最简单的,可能大家都见过内容分发模式:目前用的比较多查询分离模式:对于大并发的查询、业务微服务模式:适用于复杂的业务模式的拆解多级缓存模式:可以把缓存玩的很好分库分表模式:解决单机数据库瓶颈弹性伸缩模式:解决波峰波谷业务流量不均匀的方法之一多机房模式:解决高可用、高性能的一种方法

单库单应用模式

这是最简单的一种设计模式,我们的大部分本科毕业设计、一些小的应用,基本上都是这种模式,这种模式的一般设计见下图:

如上图所示,这种模式一般只有一个数据库,一个业务应用层,一个后台管理系统,所有的业务都是用过业务层完成的,所有的数据也都是存储在一个数据库中的,好一点会有数据库的同步。虽然简单,但是也并不是一无是处。

优点:结构简单、开发速度快、实现简单,可用于产品的第一版等有原型验证需求、用户少的设计。缺点:性能差、基本没有高可用、扩展性差,不适用于大规模部署、应用等生产环境。

内容分发模式

基本上所有的大型的网站都有或多或少的采用这一种设计模式,常见的应用场景是使用CDN技术把网页、图片、CSS、JS等这些静态资源分发到离用户最近的服务器。这种模式的一般设计见下图:

如上图所示,这种模式较单库单应用模式多了一个CDN、一个云存储OSS(七牛、又拍等雷同)。一个典型的应用流程(以用户上传、查看图片需求为例)如下:

上传的时候,用户选择本地机器上的一个图片进行上传程序会把这个图片上传到云存储OSS上,并返回该图片的一个URL程序把这个URL字符串存储在业务数据库中,上传完成。查看的时候,程序从业务数据库得到该图片的URL程序通过DNS查询这个URL的图片服务器智能DNS会解析这个URL,得到与用户最近的服务器(或集群)的地址A然后把服务器A上的图片返回给程序程序显示该图片,查看完成。

由上可知,这个模式的关键是智能DNS,它能够解析出离用户最近的服务器。运行原理大致是:根据请求者的IP得到请求地点B,然后通过计算或者配置得到与B最近或通讯时间最短的服务器C,然后把C的IP地址返回给请求者。这种模式的优缺点如下:

优点:资源-快、无需过多的开发与配置,同时也减轻了后端服务器对资源的存储压力,减少带宽的使用。缺点:目前来说OSS,CDN的价格还是稍微有些贵(虽然已经降价好几次了),只适用于中小规模的应用,另外由于网络传输的延迟、CDN的同步策略等,会有一些一致性、更新慢方面的问题。

查询分离模式

这种模式主要解决单机数据库压力过大,从而导致业务缓慢甚至超时,查询响应时间变长的问题,也包括需要大量数据库服务器计算资源的查询请求。这个可以说是单库单应用模式的升级版本,也是技术架构迭代演进过程中的必经之路。这种模式的一般设计见下图:

如上图所示,这种模式较单库单应用模式与内容分发模式多了几个部分,一个是业务数据库的主从分离,一个是引入了ES,为什么要这样?都解决了哪些痛点,下面具体结合业务需求场景进行叙述。

场景一:全文关键词检索

我想这个需求,绝大多数应用都会有,如果使用传统的数据库技术,大部分可能都会使用like这种SQL语句,高级一点可能是先分词,然后通过分词index相关的记录。SQL语句的性能问题与全表扫描机制导致了非常严重的性能问题,现在基本上很少见到。这里的ES是ElasticSearch的缩写,是一种查询引擎,类似的还有Solr等,都差不多的技术,ES较Solr配置简单、使用方便,所以这里选用了它。另外,ES支持横向扩展,理论上没有性能的瓶颈。同时,还支持各种插件、自定义分词器等,可扩展性较强。在这里,使用ES不仅可以替代数据库完成全文检索功能,还可以实现诸如分页、排序、分组、分面等功能。具体的,请同学们自行学习之。那怎么使用呢?一个一般的流程是这样的:

服务端把一条业务数据落库服务端异步把该条数据发送到ESES把该条记录按照规则、配置放入自己的索引库客户端查询的时候,由服务端把这个请求发送到ES,得到数据后,根据需求拼装、组合数据,返回给客户端

实际中怎么用,还请同学们根据实际情况做组合、取舍。

场景二:大量的普通查询

这个场景是指我们的业务中的大部分辅助性的查询,如:取钱的时候先查询一下余额,根据用户的ID查询用户的记录,取得该用户最新的一条取钱记录等。我们肯定是要天天要用的,而且用的还非常多。同时呢,我们的写入请求也是非常多的,导致大量的写入、查询操作压向同一数据库,然后,数据库挂了,系统挂了,领导生气了,被开除了,还不起房贷了,露宿街头了,老婆跟别人跑了,…

不敢想,所以要求我们必须分散数据库的压力,一个业界较成熟的方案就是数据库的读写分离,写的时候入主库,读的时候读从库。这样就把压力分散到不同的数据库了,如果一个读库性能不行,扛不住的话,可以一主多从,横向扩展。可谓是一剂良药啊!那怎么使用呢?一个一般的流程是这样的:

服务端把一条业务数据落库数据库同步或异步或半同步把该条数据复制到从库服务端读数据的时候直接去从库读相应的数据

比较简单吧,一些聪明的、爱思考的、上进的同学可能发现问题了,也包括上面介绍的场景一,就是延迟问题,如:数据还没有到从库,我就马上读,那么是读不到的,会发生问题的。对于这个问题,各家公司解决的思路不一样,方法不尽相同。一个普遍的解决方案是:读不到就读主库,当然这么说也是有前提条件的,但具体的方案这里就不一一展开了,我可能会在接下来的分享中详解各种方案。另外,关于数据库的复制模式,还请同学们自行学习,太多了,这里说不清。该总结一下这种模式的优缺点的了,如下:

优点:减少数据库的压力,理论上提供无限高的读性能,间接提高业务(写)的性能,专用的查询、索引、全文(分词)解决方案。缺点:数据延迟,数据一致性的保证。

微服务模式

上面的模式看似不错,解决了性能问题,我可以不用露宿街头了、老婆还是我的,哈哈。但是软件系统天生的复杂性决定了,除了性能,还有其他诸如高可用、健壮性等大量问题等待我们解决,再加上各个部门间的撕逼、扯皮,更让我们码农雪上加霜,所以

继续吧…

微服务模式可以说是最近的热点,花花绿绿、大大小小、国内国外的公司都在鼓吹,实践这个模式,可是大部分都没有弄清楚为什么要这么做,也并不知道这么做有什么好处、坏处,在这里,我将以我自己的亲身实践说一下我对这个模式的看法,不喜勿喷!随着业务与人员的增加,遇到了如下的问题:

单机数据库写请求量大量增加,导致数据库压力变大数据库一旦挂了,那么整个业务都挂了业务代码越来越多,都在一个GIT里,越来越难以维护代码腐化严重、臭味越来越浓上线越来越频繁,经常是一个小功能的修改,就要整个大项目要重新编译部门越来越多,该哪个部门改动大项目中的哪个东西,撕逼的厉害其他一些外围系统直接连接数据库,导致一旦数据库结构发生变化,所有的相关系统都要通知,甚至对修改不敏感的系统也要通知每个应用服务器需要开通所有的权限、网络、FTP、各种各样的,因为每个服务器部署的应用都是一样的作为架构师,我已经失去了对这个系统的把控…

为了解决上述问题,我司使用了微服务模式,这种模式的一般设计见下图:

如上图所示,我把业务分块,做了垂直切分,切成一个个独立的系统,每个系统各自衍化,有自己的库、缓存、ES等辅助系统,系统之间的实时交互通过RPC,异步交互通过MQ,通过这种组合,共同完成整个系统功能。 那么,这么做是否真的解决上述问题了呢?不玩虚的,一个个来说。对于问题一,由于拆分成了多个子系统,系统的压力被分散了,而各个子系统都有自己的数据库实例,所以数据库的压力变小。

对于问题二,一个子系统A的数据库挂了,只是影响到系统A和使用系统A的那些功能,不会所有的功能不可用,从而解决一个数据库挂了,导致所有功能不可用的问题。

问题三、四,也因为拆分得到了解决,各个子系统有自己独立的GIT代码库,不会相互影响。通用的模块可通过库、服务、平台的形式解决。

问题五,子系统A发生改变,需要上线,那么我只需要编译A,然后上线就可以了,不需要其他系统做同样的事情。

问题六,顺应了康威定律,我部门该干什么事、输出什么,也通过服务的形式暴露出来,我部只管把我部的职责、软件功能做好就可以。

问题七,所有需要我部数据的需求,都通过接口的形式发布出去,客户通过接口获取数据,从而屏蔽了底层数据库结构,甚至数据来源,我部只需保证我部的接口契约没有发生变化即可,新的需求增加新的接口,不会影响老的接口。

问题八,不同的子系统需要不同的权限,这个问题也优雅的解决了。

问题九,暂时控制住了复杂性,我只需控制好大的方面,定义好系统边界、接口、大的流程,然后再分而治之、逐个击破、合纵连横。

目前来说,所有问题得到解决!bingo! 但是,还有许多其他的副作用会随之产生,如RPC、MQ的超高稳定性、超高性能,网络延迟,数据一致性等问题,这里就不展开来讲了,太多了,一本书都讲不完。

另外,对于这个模式来说,最难把握的是度,切记不要切分过细,我见过一个功能一个子系统,上百个方法分成上百个子系统的,真的是太过度了。实践中,一个较为可行的方法是:能不分就不分,除非有非常必要的理由!。

优点:相对高性能,可扩展性强,高可用,适合于中等以上规模公司架构。缺点:复杂、度不好把握。指不仅需要一个能在高层把控大方向、大流程、总体技术的人,还需要能够针对各个子系统有针对性的开发。把握不好度或者滥用的话,这个模式适得其反!

多级缓存模式

这个模式可以说是应对超高查询压力的一种普遍采用的策略,基本的思想就是在所有链路的地方,能加缓存就加缓存,如下图所示:

如上图所示,一般在三个地方加入缓存,一个是客户端处,一个是API网关处,一个是具体的后端业务处,下面分别介绍。

客户端处缓存:这个地方加缓存可以说是效果最好的—无延迟。因为不用经过长长的网络链条去后端业务处获取数据,从而导致加载时间过长,客户流失等损失。虽然有CDN的支持,但是从客户端到CDN还是有网络延迟的,虽然不大。具体的技术依据不同的客户端而定,对于WEB来讲,有浏览器本地缓存、Cookie、Storage、缓存策略等技术;对于APP来讲,有本地数据库、本地文件、本地内存、进程内缓存支持。以上提到的各种技术有兴趣的同学可以继续展开来学习。如果客户端缓存没有命中,那么就会去后端业务拿数据,一般来讲,都会有个API网关,在这里加缓存也是非常有必要的。

API网关处缓存:这个地方加缓存的好处是不用把请求发送到后方,直接在这里就处理了,然后返回给请求者。常见的技术,如最后,逻辑实现,这里应该是最有学问的地方。首先是写入数据,需要知道写到哪个分库分表中,读也是一样的,所以,需要有个请求路由层,负责把请求分发、转换到不同的库表中,一般有路由规则的概念。

怎么样,简单吧?哈哈,too 那义务。说说这个模式的问题,主要是带来了事务上的问题,因为分库分表,事务完成不了,而分布式事务又太笨重,所以这里需要有一定的策略,保证在这种情况下事务能够完成。采取的策略如:最终一致性、复制、特殊设计等。再有就是业务代码的改造,一些关联查询要改造,一些单表orderBy的问题需要特殊处理,也包括groupBy语句,如何解决这些副作用不是一句两句能说清楚的,以后有时间,我单独讲讲这些。

该总结一下这种模式的优缺点的了,如下:

优点:减少数据库单表的压力。缺点:事务保证困难、业务逻辑需要做大量改造。

弹性伸缩模式

这种模式主要解决突发流量的到来,导致无法横向扩展或者横向扩展太慢,进而影响业务,全站崩溃的问题。这个模式是一种相对来说比较高级的技术,也是各个大公司目前都在研究、试用的技术。截至今日,有这种思想的架构师就已经是很不错了,能够拿到较高薪资,更别提那些已经实践过的,甚至实现了底层系统的那些,所以,你懂得… 这种模式的一般设计见下图:

如上图所示,多了一个弹性伸缩服务,用来动态的增加、减少实例。原理上非常简单,但是这个模式到底解决什么问题呢?先说说由来和意义。

每年的双11、六一八或者一些大促到来之前,我们都会为大流量的到来做以下几个方面的工作: 提前准备10倍甚至更多的机器,即使用不上也要放在那里备着,以防万一。这样浪费了大量的资源。每台机器配置、调试、引流,以便让所有的机器都可用。这样浪费了大量的人力、物力,更容易出错。如果机器准备不充分,那么还要加班加点的重复上面的工作。这样做特别容易出错,引来领导的不满,没时间回家陪老婆,然后你的老婆就…(自己想)

在双十一之后,我们还要人工做缩容,非常的辛苦。一般一年中会有多次促销,那么我们就会一直这样,实在是烦!

最严重的,突然间的大流量爆发,会让我们触不及防,半夜起来扩容是在正常不过的事情,为此,我们偷懒起来,要更多的机器备着,也就出现了大量的cpu利用率为1%的机器。

我相信,如果你是老板一定很震惊吧!!!哈哈,那么如何改变这种情况呢?请接着看

为此,首先把所有的计算资源整合成资源池的概念,然后通过一些策略、监控、服务,动态的从资源池中获取资源,用完后在放回到池子中,供其他系统使用。具体实现上比较成熟的两种资源池方案是VM、docker,每个都有着自己强大的生态。监控的点有CPU、内存、硬盘、网络IO、服务质量等,根据这些,在配合一些预留、扩张、收缩策略,就可以简单的实现自动伸缩。怎么样?是不是很神奇?

该总结一下这种模式的优缺点的了,如下:

优点:弹性、随需计算,充分优化企业计算资源。缺点:应用要从架构层做到可横向扩展化改造、依赖的底层配套比较多,对技术水平、实力、应用规模要求较高。

多机房模式

这种模式主要解决不同地区高性能、高可用的问题。

随着应用用户不断的增加,用户群体分布在全球各地,如果把服务器部署在一个地方,一个机房,比如北京,那么美国的用户使用应用的时候就会特别慢,因为每一个请求都需要通过海底光缆走上个那么一秒钟(预估)左右,这样对用户体验及其不好。怎么办?使用多机房部署。

这种模式的一般设计见下图:

如上图所示,一个典型的用户请求流程如下:

用户请求一个链接A 通过DNS智能解析到离用户最近的机房B 使用B机房服务链接A

是不是觉得很简单,没啥?其实这里面的问题没有表面这么简单,下面一一道来。首先是数据同步问题,在中国产生的数据要同步到美国,美国的也一样,数据同步就会涉及数据版本、一致性、更新丢弃、删除等问题。其次是一地多机房的请求路由问题,典型的是如上图,中国的北京机房和杭州机房,如果北京机房挂了,那么要能够通过路由把所有发往北京机房的请求转发到杭州机房。异地也存在这个问题。

所以,多机房模式,也就是异地多活并不是那么的简单,这里只是起了个头,具体的有哪些坑,会在另一篇文章中介绍。

该总结一下这种模式的优缺点的了,如下:

优点:高可用、高性能、异地多活。缺点:数据同步、数据一致性、请求路由。

至此,整个关于八种架构设计模式及其优缺点概述就介绍完了,大约1W字左右。最后,我想说的是没有银弹、灵活运用,共勉!

结语

如果这篇文章对您有所帮助,或者有所启发的话,求一键三连:点赞、评论、收藏➕关注,您的支持是我坚持写作最大的动力。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Spring Cloud架构的各个组件的原理分析
下一篇:高性能Swoole扩展的安装与使用文档入门
相关文章

 发表评论

暂时没有评论,来抢沙发吧~