洞察了解前端三大主流框架如何影响企业跨平台小程序开发的效率与灵活性
1248
2022-12-02
OpenCV学习笔记-霍夫线变换1
霍夫线变换的函数为:
HoughLines
利用 Hough 变换在二值图像中找到直线
CvSeq* cvHoughLines2( CvArr* image, void* line_storage, int method, double rho, double theta, int threshold, double param1=0, double param2=0 );
输入 8-比特、单通道 (二值) 图像,当用CV_HOUGH_PROBABILISTIC方法检测的时候其内容会被函数改变 line_storage 检测到的线段存储仓. 可以是内存存储仓 (此种情况下,一个线段序列在存储仓中被创建,并且由函数返回),或者是包含线段参数的特殊类型(见下面)的具有单行/单列的矩阵(CvMat*)。矩阵头为函数所修改,使得它的 cols/rows 将包含一组检测到的线段。如果 line_storage 是矩阵,而实际线段的数目超过矩阵尺寸,那么最大可能数目的线段被返回(对于标准hough变换,线段按照长度降序输出). method
CV_HOUGH_STANDARD - 传统或标准 Hough 变换. 每一个线段由两个浮点数 (ρ, θ) 表示,其中 ρ 是直线与原点 (0,0) 之间的距离,θ 线段与 x-轴之间的夹角。因此,矩阵类型必须是 CV_32FC2 type.CV_HOUGH_PROBABILISTIC - 概率 Hough 变换(如果图像包含一些长的线性分割,则效率更高). 它返回线段分割而不是整个线段。每个分割用起点和终点来表示,所以矩阵(或创建的序列)类型是 CV_32SC4.CV_HOUGH_MULTI_SCALE - 传统 Hough 变换的多尺度变种。线段的编码方式与 CV_HOUGH_STANDARD 的一致。
与象素相关单位的距离精度 theta 弧度测量的角度精度 threshold 阈值参数。如果相应的累计值大于 threshold, 则函数返回的这个线段. param1
对传统 Hough 变换,不使用(0).对概率 Hough 变换,它是最小线段长度.对多尺度 Hough 变换,它是距离精度 rho 的分母 (大致的距离精度是 rho 而精确的应该是 rho / param1 ).对传统 Hough 变换,不使用 (0).对概率 Hough 变换,这个参数表示在同一条直线上进行碎线段连接的最大间隔值(gap), 即当同一条直线上的两条碎线段之间的间隔小于param2时,将其合二为一。对多尺度 Hough 变换,它是角度精度 theta 的分母 (大致的角度精度是 theta 而精确的角度应该是 theta / param2).
函数 cvHoughLines2 实现了用于线段检测的不同 Hough 变换方法. Example. 用 Hough transform 检测线段
例题如下:
#include "stdafx.h"#include
结果为:
参考文献:
1.学习OpenCV,于仕祺,刘瑞祯,清华大学出版,pp.175-179
2.http://opencv.org-/index.php/Cv%E5%9B%BE%E5%83%8F%E5%A4%84%E7%90%86#HoughLines
3.OpenCV文档,路径:"OpenCV2.2\doc\opencv.pdf"
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~