app开发者平台在数字化时代的重要性与发展趋势解析
1044
2022-12-01
使用PSO优化的RBF进行数据预测回归(Matlab)
目录
摘要:
1.RBF神经网络介绍:
2.RBF神经网络与BP神经网络的特点:
3.PSO-RBF优化流程:
4.实际测试及结果分析:
4.1 BP神经网络测试结果
4.2 RBF神经网络测试结果
4.3 PSO-RBF神经网络测试结果
5.代码展示:
摘要:
本文将粒子群算法(PSO)与径向基神经网络(RBF)相结合,使用PSO优化RBF神经网络的主要参数中心值c, 宽度σ以及连接权值w。然后将影响输出响应值的多个特征因素作为PSO-RBF神经网络模型的输入神经元, 输出响应值作为输出神经元进行预测测试。并使用BP神经网络,RBF神经网络对同一任务进行对比,结果表示PSO-RBF的准确度最好。
1.RBF神经网络介绍:
RBF神经网络的原理是利用径向基函数作为隐含层单元的“基”构成隐含层空间, 隐含层对输入向量进行变换, 将低维空间的输入数据映射到高维空间, 使得在低维空间线性不可分的问题在高维空间实现线性可分。下图为RBF神经网络结构:
2.RBF神经网络与BP神经网络的特点:
RBF神经网络与BP神经网络不同, RBF的泛化能力在很多方面要优于BP, 同时在网络的训练过程中, 不需要调整神经元之间的连接权值, 完全通过样本数据进行学习, 而且RBF神经网络的学习速率很快. 与BP神经网络模型、传统物理模型相比, RBF神经网络构建的模型不是过于复杂,适用性很好. 所以本文以RBF神经网络模型为基础,利用PSO算法对RBF神经网络的主要参数进行优化,最终建立预测精度较高的模型.
3.PSO-RBF优化流程:
RBF神经网络的关键问题是径向基函数的中心、宽度和连接权值这3个参数的确定, 而采用PSO算法对RBF神经网络优化就是将这3个参数当做自由运动的粒子, 以向量的形式表示粒子的位置, 通过PSO算法来确定参数合适的值, 最终建立RBF神经网络.在优化过程中, 根据径向基函数的特点选择均方误差作为PSO算法的适应度函数。
4.实际测试及结果分析:
4.1 BP神经网络测试结果
4.2 RBF神经网络测试结果
4.3 PSO-RBF神经网络测试结果
从上面的结果可以看出,PSO-RBF的预测性能是最佳的,其次是RBF,最后是BP。这说明RBF相比于BP来说在回归预测问题上有着更好的性能。通过使用PSO来寻找RBF的最优参数可以使得RBF到达更高的预测性能。
5.代码展示:
本文仅展示部分代码,需要全部的完整代码点这里
已写好输入与输出的替换接口,可以通过替换自己数据集实现不同的功能。
%% 这个函数是主函数,要直接运行这个就可看到所有结果clc;clear;close all;%% 输入数据并建立训练集测试集load data.mat;temp = randperm(size(NIR,1)); %打乱60个样本排序x_train = NIR(temp(1:50),:)'; % 训练输入x_test = NIR(temp(51:end),:)'; % 测试输入y_train =octane(temp(1:50),:)'; % 训练输出y_test =octane(temp(51:end),:)'; % 训练输入%% 归一化% 输入数据归一化[NIR, ps_input] = mapminmax(NIR',0,1);x_train = mapminmax('apply',x_train,ps_input);x_test = mapminmax('apply',x_test,ps_input);% 输出数据归一化[octane, ps_output] = mapminmax(octane',0,1); y_train = mapminmax('apply',y_train,ps_output);y_test = mapminmax('apply',y_test,ps_output);%% BP神经网络[net_bp,tr_bp,Predict_bp,R_bp] = BPnet(x_train,x_test,y_train,y_test,ps_output);%% RBF神经网络[net_rbf,Predict_rbf,R_rbf] = RBFnet(x_train,x_test,y_train,y_test,ps_output);%% PSO-RBF神经网络[mse,TestNNOut] = PSORBFnet(x_train,x_test,y_train,y_test,ps_output);
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~