ReentrantReadWriteLock读写锁的使用1

网友投稿 655 2022-11-26

ReentrantReadWriteLock读写锁的使用1

ReentrantReadWriteLock读写锁的使用1

本文可作为传智播客《张孝祥-Java多线程与并发库高级应用》的学习笔记。

一个简单的例子

两个线程,一个不断打印a,一个不断打印b

public class LockTest { public static void main(String[] args){ final Outputer outputer = new Outputer(); new Thread(new Runnable(){ @Override public void run() { while(true){ try { Thread.sleep(10); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } outputer.output("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"); } } }).start(); new Thread(new Runnable(){ @Override public void run() { while(true){ try { Thread.sleep(10); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } outputer.output("bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"); }//a的数量与b的数量一致 } }).start(); } static class Outputer{ public void output(String name){ int len = name.length(); try{ for(int i=0;i

最后的部分结果

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

b

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

为什么会这样?

很简单,在输出b的时候,还没有输出完,a线程(打印a的那个线程)已经抢到了控制权,开始打印a,等a线程将a输出完后,并且打印了一个回车后,b线程才抢回系统控制权,打印它上一次最后剩下的一个b。

要解决上面的问题很简单:

static class Outputer{ public synchronized void output(String name){ int len = name.length(); //..... } }

这样一来,我们就保证了Outputer类里的output方法是原子性的,不会有两个线程同时执行它。

就上面的例子而言我们是否还有更好的方法呢?

有。

java5中提供了一种更加面向对象的技术类解决多线程之间的互斥问题-----锁。

java.util.concurrent.locks Interface Lock

锁技术的核心就是Lock及它的实现类。

基本锁

*******************************************

*******************************************

以下为2016您3月21日补充

既然都说到锁了,我们就看上java.util.concurrent下都有什么东西

首先concurrent下有两个子包

atomic与locks

atomic包里面主要是对基本数据类型如int,float,boolean等的原子封装

lock包是我们今天要说的

OK有3个接口

首先我先说明,这3个接口之间并没有继承的关系

Lock与ReadWriteLock都是锁,可以实现线程的互斥,只是ReadWriteLock可以更进一步的实现读与读不互斥(更多的资料,见下文)

上面的readlock与writelock分别是ReentrantReadWriteLock的两个静态内部类

Condition呢,上面的Lock实现了线程的互斥,但是我们还得实现线程的通信呀,那就是condition

ReadWriteLock没有这个方法的

关于condition,可参见拙作

​​聊聊condition​​

以上为2016您3月21日补充

*******************************************

*******************************************

上面的例子如果使用锁,代码如下

static class Outputer{ Lock lock = new ReentrantLock(); public void output(String name){ int len = name.length(); lock.lock(); //标识1 try{ for(int i=0;i

线程a执行到上面代码的标识1处加锁,当线程a在输出字符a时,线程b也执行到了标识1处。此时线程b是不能获得锁的。它被阻塞到标识1处,直到线程a打印完之后在标识2处释放了锁。(线程a线程b共用一把锁,也就是Lock lock = new ReentrantLock())

另外为什么标识2出的释放锁放到了finally里,大家应该明白了吧。

读与写

上面的问题中output的主体(len是方法内部的局部变量,为每个线程自有,互不干涉)被全部互斥,它保证了任何时候,都只有一个线程执行标识1与标识2直接的代码。

但是我们得意识到:对共有数据的操作,基本可以分为两类,读与写。

对共有资源操作的时候,我们应该遵循三大准则:

1 当一个线程对资源进行写操作的时候,别的线程既不能对资源读也不能对资源写。

2 当一个线程对资源进行读操作的时候,别的线程不能对资源写。

3 当一个线程对资源进行读操作的时候,别的线程能对资源读。

一二准则保证了系统的正确性。第三准则能提高系统的性能。 毕竟多个线程对资源进行读操作是可以的。

看下面这个既有读又有写的例子。

public class ReadWriteLockTest { public static void main(String[] args) { final Queue3 q3 = new Queue3(); for(int i=0;i<3;i++) { new Thread(){ public void run(){ while(true){ q3.get(); } } }.start(); new Thread(){ public void run(){ while(true){ q3.put(new Random().nextInt(10000)); } } }.start(); } }}class Queue3{ private Object data = null;//共享数据,只能有一个线程能写该数据,但可以有多个线程同时读该数据。 public void get(){ try { System.out.println(Thread.currentThread().getName() + " be ready to read data!"); Thread.sleep((long)(Math.random()*1000)); System.out.println(Thread.currentThread().getName() + "have read data :" + data); } catch (InterruptedException e) { e.printStackTrace(); } } public void put(Object data){ try { System.out.println(Thread.currentThread().getName() + " be ready to write data!"); Thread.sleep((long)(Math.random()*1000)); this.data = data; System.out.println(Thread.currentThread().getName() + " have write data: " + data); } catch (InterruptedException e) { e.printStackTrace(); } }}

结果如下

Thread-0 be ready to read data!

Thread-1 be ready to write data!

Thread-2 be ready to read data!

Thread-3 be ready to write data!

Thread-4 be ready to read data!

Thread-5 be ready to write data!

Thread-0have read data :null

Thread-0 be ready to read data!

Thread-3 have write data: 5280

Thread-3 be ready to write data!

Thread-1 have write data: 5839

Thread-1 be ready to write data!

Thread-4have read data :5839

我们可以看到 读中有写  写中有写 写中有读 完全乱套了。

我们试试个两个方法加上synchronized 结果如下

Thread-0 be ready to read data!

Thread-0have read data :null

Thread-5 be ready to write data!

Thread-5 have write data: 7931

Thread-5 be ready to write data!

Thread-5 have write data: 9564

Thread-5 be ready to write data!

Thread-5 have write data: 1203

Thread-5 be ready to write data!

Thread-5 have write data: 8870

Thread-4 be ready to read data!

Thread-4have read data :8870

Thread-3 be ready to write data!

Thread-3 have write data: 9334

Thread-3 be ready to write data!

Thread-3 have write data: 2680

Thread-3 be ready to write data!

Thread-3 have write data: 9948

Thread-3 be ready to write data!

Thread-3 have write data: 375

Thread-2 be ready to read data!

读与写完全互斥,读的时候不写,写的时候不读。满足一二准则。

读写锁

为了实现准则三,在java5中的出现了读写锁。

java.util.concurrent.locks Interface ReadWriteLock

ReadWriteLock有两个方法

Lock     readLock()   Returns the lock used for reading.

Lock     writeLock()  Returns the lock used for writing.

得到两种锁后,就可以调用锁的lock与unlock方法了。

一般使用它的子类ReentrantReadWriteLock来产生ReadWriteLock

其签名如下:

public class ReentrantReadWriteLock extends Object implements ReadWriteLock, Serializable

看看使用方法

class Queue3{ private Object data = null;//共享数据,只能有一个线程能写该数据,但可以有多个线程同时读该数据。 ReadWriteLock rwl = new ReentrantReadWriteLock(); public void get(){ rwl.readLock().lock(); try { System.out.println(Thread.currentThread().getName() + " be ready to read data!"); Thread.sleep(20); System.out.println(Thread.currentThread().getName() + " have read data :" + data); } catch (InterruptedException e) { e.printStackTrace(); }finally{ rwl.readLock().unlock(); } } public void put(Object data){ rwl.writeLock().lock(); try { System.out.println(Thread.currentThread().getName() + " be ready to write data!"); Thread.sleep(20); this.data = data; System.out.println(Thread.currentThread().getName() + " have write data: " + data); } catch (InterruptedException e) { e.printStackTrace(); }finally{ rwl.writeLock().unlock(); } }}

结果如下

Thread-5 have write data: 7329

Thread-0              be ready to read data!

Thread-0       have read data :7329

Thread-1 be ready to write data!

Thread-1 have write data: 1361

Thread-2              be ready to read data!

Thread-4              be ready to read data!

Thread-0              be ready to read data!

Thread-2       have read data :1361

Thread-2              be ready to read data!

Thread-4       have read data :1361

我们可以看到 线程1的写是完全互斥的。

而线程2 4 0的读是可以同步进行的。

这是读写锁最简单的例子,下一节,我们看一个稍微复杂的,把读锁与写锁放到一个方法内的例子。

感谢glt

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:用责任链方式来挑选单词
下一篇:ReentrantReadWriteLock读写锁的使用2
相关文章

 发表评论

暂时没有评论,来抢沙发吧~