洞察企业如何通过FinClip提升跨平台小程序加载效率,适应多样化市场需求
726
2022-11-26
Storm并发机制详解
本文可作为 <
package Storm.blueprints.chapter1.v1;import backtype.Storm.Config;import backtype.Storm.LocalCluster;import backtype.Storm-ology.TopologyBuilder;import backtype.Storm.tuple.Fields;import static Storm.blueprints.utils.Utils.*;public class WordCountTopology { private static final String SENTENCE_SPOUT_ID = "sentence-spout"; private static final String SPLIT_BOLT_ID = "split-bolt"; private static final String COUNT_BOLT_ID = "count-bolt"; private static final String REPORT_BOLT_ID = "report-bolt"; private static final String TOPOLOGY_NAME = "word-count-topology"; public static void main(String[] args) throws Exception { SentenceSpout spout = new SentenceSpout(); SplitSentenceBolt splitBolt = new SplitSentenceBolt(); WordCountBolt countBolt = new WordCountBolt(); ReportBolt reportBolt = new ReportBolt(); TopologyBuilder builder = new TopologyBuilder(); builder.setSpout(SENTENCE_SPOUT_ID, spout); // SentenceSpout --> SplitSentenceBolt builder.setBolt(SPLIT_BOLT_ID, splitBolt) .shuffleGrouping(SENTENCE_SPOUT_ID); // SplitSentenceBolt --> WordCountBolt builder.setBolt(COUNT_BOLT_ID, countBolt) .fieldsGrouping(SPLIT_BOLT_ID, new Fields("word")); // WordCountBolt --> ReportBolt builder.setBolt(REPORT_BOLT_ID, reportBolt) .globalGrouping(COUNT_BOLT_ID); Config config = new Config(); LocalCluster cluster = new LocalCluster(); cluster.submitTopology(TOPOLOGY_NAME, config, builder.createTopology()); waitForSeconds(10); cluster.killTopology(TOPOLOGY_NAME); cluster.shutdown(); }}
程序执行完毕后,在控制台可以看到类似以下的输出:
很简单,就是就经典的数单词数量的topology,大家根据各个类的名字,应该也能猜出来内部的逻辑。
里面的代码,我就不贴出来了,大家自己都能找到很多。
我们知道在设置spout/bolt的时候如果不设置parallelism_hint,就默认为1
它的整体的并行图,如下:
正如在图中看到的,唯一的并发机制出现在线程级。每个任务在同一个 JVM 的不同线程中执行。如何增加并发度以充分利用硬件能力?让我们来增加分配给topology 的
worker 和 executer 的数量。
配置executor和task
我们把 sentencespout的并发度调成2,并且worker不变。代码如下:
//这个2 指的是有两个executor 和task的数量无关 不过在这行代码里,我们没有指定task的数量,因为executor为2 那么task也就是2 builder.setSpout(SENTENCE_SPOUT_ID, spout, 2);
那么它的并行图如下:
配置worker数量
这个很简单,我们在config里设置一下就OK
Config config = new Config();
config.setNumWorkers(2);
下一步,我们给语句分割 bolt SplitSentenceBolt 设置 4 个 task 和 2 个 executor。每个executor 线程指派 2 个 task 来执行(4/2=2)。还将配置单词计数 bolt 运行四个 task,每个task 由一个 executor 线程执行:
builder.setBolt(SPLIT_BOLT_ID, splitBolt, 2) .setNumTasks(4) .shuffleGrouping(SENTENCE_SPOUT_ID); // SplitSentenceBolt --> WordCountBolt builder.setBolt(COUNT_BOLT_ID, countBolt, 4) .fieldsGrouping(SPLIT_BOLT_ID, new Fields("word")); // WordCountBolt --> ReportBolt
这么一来,整体的运行图就是下面的样子了
此时,运行代码,每个单词的计数比原topology 要多:
结果如下:
书中的代码
本文所引用的例子在Chapter01中
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~