Storm并发机制详解

网友投稿 726 2022-11-26

Storm并发机制详解

Storm并发机制详解

本文可作为 <>一书1.4节的读书笔记 在Storm中,一个task就可以理解为在集群中某个节点上运行的一个spout或者bolt实例。 记住一个task是一个实例。 实例明白吧 Class Person 是一个类, persona,personb都是Person的一个实例。 在集群运行运行中,topology主要有四个组成部分。 他们从低到高分别是task(bolt/spout实例),Executor(线程),Workers(JVM虚拟机),Nodes(服务器) task上面已经说过,task的nextTuple和execute方法会被executor线程调用 Executor是jvm进程中运行的一个java线程,多个task可以分配给同一个executor来执行。也就是说executor与task是一对多的关系。不过,除非明确指定,Storm会默认给每个executor分配一个task。默认是一对一。 Workers,指的是node上独立的jvm进程。每个node可以配置运行一个或者多个worker。一个topology会分配到一个或者多个worker上运行。 Nodes,指配置在一个 Storm 集群中的服务器,会执行 topology 的一部分运算。一个 Storm 集群可以包括一个或者多个工作 node。 我们看下面的例子

package Storm.blueprints.chapter1.v1;import backtype.Storm.Config;import backtype.Storm.LocalCluster;import backtype.Storm-ology.TopologyBuilder;import backtype.Storm.tuple.Fields;import static Storm.blueprints.utils.Utils.*;public class WordCountTopology { private static final String SENTENCE_SPOUT_ID = "sentence-spout"; private static final String SPLIT_BOLT_ID = "split-bolt"; private static final String COUNT_BOLT_ID = "count-bolt"; private static final String REPORT_BOLT_ID = "report-bolt"; private static final String TOPOLOGY_NAME = "word-count-topology"; public static void main(String[] args) throws Exception { SentenceSpout spout = new SentenceSpout(); SplitSentenceBolt splitBolt = new SplitSentenceBolt(); WordCountBolt countBolt = new WordCountBolt(); ReportBolt reportBolt = new ReportBolt(); TopologyBuilder builder = new TopologyBuilder(); builder.setSpout(SENTENCE_SPOUT_ID, spout); // SentenceSpout --> SplitSentenceBolt builder.setBolt(SPLIT_BOLT_ID, splitBolt) .shuffleGrouping(SENTENCE_SPOUT_ID); // SplitSentenceBolt --> WordCountBolt builder.setBolt(COUNT_BOLT_ID, countBolt) .fieldsGrouping(SPLIT_BOLT_ID, new Fields("word")); // WordCountBolt --> ReportBolt builder.setBolt(REPORT_BOLT_ID, reportBolt) .globalGrouping(COUNT_BOLT_ID); Config config = new Config(); LocalCluster cluster = new LocalCluster(); cluster.submitTopology(TOPOLOGY_NAME, config, builder.createTopology()); waitForSeconds(10); cluster.killTopology(TOPOLOGY_NAME); cluster.shutdown(); }}

程序执行完毕后,在控制台可以看到类似以下的输出:

很简单,就是就经典的数单词数量的topology,大家根据各个类的名字,应该也能猜出来内部的逻辑。

里面的代码,我就不贴出来了,大家自己都能找到很多。

我们知道在设置spout/bolt的时候如果不设置parallelism_hint,就默认为1

它的整体的并行图,如下:

正如在图中看到的,唯一的并发机制出现在线程级。每个任务在同一个 JVM 的不同线程中执行。如何增加并发度以充分利用硬件能力?让我们来增加分配给topology 的

worker 和 executer 的数量。

配置executor和task

我们把  sentencespout的并发度调成2,并且worker不变。代码如下:

//这个2 指的是有两个executor 和task的数量无关 不过在这行代码里,我们没有指定task的数量,因为executor为2 那么task也就是2 builder.setSpout(SENTENCE_SPOUT_ID, spout, 2);

那么它的并行图如下:

配置worker数量

这个很简单,我们在config里设置一下就OK

Config config = new Config();

config.setNumWorkers(2);

下一步,我们给语句分割 bolt SplitSentenceBolt 设置 4 个 task 和 2 个 executor。每个executor 线程指派 2 个 task 来执行(4/2=2)。还将配置单词计数 bolt 运行四个 task,每个task 由一个 executor 线程执行:

builder.setBolt(SPLIT_BOLT_ID, splitBolt, 2) .setNumTasks(4) .shuffleGrouping(SENTENCE_SPOUT_ID); // SplitSentenceBolt --> WordCountBolt builder.setBolt(COUNT_BOLT_ID, countBolt, 4) .fieldsGrouping(SPLIT_BOLT_ID, new Fields("word")); // WordCountBolt --> ReportBolt

这么一来,整体的运行图就是下面的样子了

此时,运行代码,每个单词的计数比原topology 要多:

结果如下:

书中的代码

本文所引用的例子在Chapter01中

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Strom数据流分组解析
下一篇:关于Lt分发系统的时序图分析
相关文章

 发表评论

暂时没有评论,来抢沙发吧~