app开发者平台在数字化时代的重要性与发展趋势解析
608
2022-11-23
迁移学习简介
文章目录
前言迁移学习的概念为什么需要迁移学习迁移学习在计算机视觉中的应用参考
前言
冬末春初,北京的天气渐渐暖了起来。这是一句再平常不过的气候描述。对于我们在北半球生活的人来说,这似乎是一个司空见惯的现象。北京如此,纽约如此,东京如此,巴黎也如此。然而此刻,假如我问你,阿根廷的首都布宜诺斯艾利斯,天气如何?稍稍有点地理常识的人就该知道,阿根廷位于南半球,天气恰恰相反:正是夏末秋初的时候,天气渐渐凉了起来。
我们何以根据北京的天气来推测出纽约、东京和巴黎的天气?我们又何以不能用相同的方式来推测阿根廷的天气?
答案显而易见:因为它们的地理位置不同。除去阿根廷在南半球之外,其他几个城市均位于北半球,故而天气变化相似。
我们可以利用这些地点地理位置的相似性和差异性,很容易地推测出其他地点的天气。这样一个简单的事实,就引出了我们要介绍的主题:迁移学习。
迁移学习的概念
迁移学习,顾名思义,就是要进行迁移。放到我们人工智能和机器学习的学科里讲,迁移学习是一种学习的思想和模式。
我们都对机器学习有了基本的了解。机器学习是人工智能的一大类重要方法,也是目前发展最迅速、效果最显著的方法。机器学习解决的是让机器自主地从数据中获取知识,从而应用于新的问题中。迁移学习作为机器学习的一个重要分支,侧重于将已经学习过的知识迁移应用于新的问题中。
迁移学习的核心问题是,找到新问题和原问题之间的相似性,才可以顺利地实现知识的迁移。比如在我们一开始说的天气问题中,那些北半球的天气之所以相似,是因为它们的地理位置相似;而南北半球的天气之所以有差异,也是因为地理位置有根本不同。
其实我们人类对于迁移学习这种能力,是与生俱来的。比如,我们如果已经会打乒乓球,就可以类比着学习打网球。再比如,我们如果已经会下中国象棋,就可以类比着下国际象棋。因为这些活动之间,往往有着极高的相似性。生活中常用的“举一反三”、“照猫画虎”就很好地体现了迁移学习的思想。
回到我们的问题中来。我们用更加学术更加机器学习的语言来对迁移学习下一个定义。迁移学习,是指利用数据、任务、或模型之间的相似性,将在旧领域学习过的模型,应用于新领域的一种学习过程。
为什么需要迁移学习
了解了迁移学习的概念之后,紧接着还有一个非常重要的问题:迁移学习的目的是什 么? 或者说,为什么要用迁移学习? 我们把原因概括为以下四个方面:
上述存在的几个重要问题,使得传统的机器学习方法疲于应对。迁移学习则可以很好地进行解决。那么,迁移学习是如何进行解决的呢?
迁移学习在计算机视觉中的应用
迁移学习已被广泛地应用于计算机视觉的研究中。特别地,在计算机视觉中,迁移学习方法被称为 Domain Adaptation。Domain adaptation 的应用场景有很多,比如图片分类、图片哈希等。
图 10展示了不同的迁移学习图片分类任务示意。同一类图片,不同的拍摄角度、不同光照、不同背景,都会造成特征分布发生改变。因此,使用迁移学习构建跨领域的鲁棒分类器是十分重要的。
参考
https://github.com/jindongwang/transferlearning
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~