探索flutter框架开发的app在移动应用市场的潜力与挑战
754
2022-11-23
基于检测框的遥感场景识别教程
应用背景介绍
由于高分遥感影像,同物异谱和同谱异物现象较为严重,尤其针对那种没有固定的几何形态、只有纹理特征的地类进行建模时,其提取结果较差,误提率较高。从人的视角来看,易混淆的地类之间其纹理相似,某些情况下,我们也需要结合周边的场景信息才能准确判断出该地类的类别,这对于人工智障来说这是个极大的挑战,因此,引入场景识别模型进行检测框的过滤是个不错的选择。
方法
样本准备
负样本准备 根据目标识别结果,挑选出误识别的区域。正样本准备 利用目标识别样本,以所绘制检测框的中心向外延伸N个长度,自动进行裁剪。
下面的代码是以shapefile格式的标签来开展的
gen_pos.py
import osimport cv2import numpy as npimport syssys.path.append('data')from shp2imagexy import *import globimport matplotlib.pyplot as pltdef bbox_to_rect(bbox, color): # 本函数已保存在d2lzh包中方便以后使用 # 将边界框(左上x, 左上y, 右下x, 右下y)格式转换成matplotlib格式: # ((左上x, 左上y), 宽, 高) return plt.Rectangle( xy=(bbox[0], bbox[1]), width=bbox[2]-bbox[0], height=bbox[3]-bbox[1], fill=False, edgecolor=color, linewidth=2)def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=False, scaleFill=True, scaleup=True): # Resize image to a 32-pixel-multiple rectangle shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better test mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, 128), np.mod(dh, 128) # wh padding elif scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return img, ratio, (dw, dh)if __name__ == '__main__': imglist = glob.glob('D:/2021/7/em20210628/sheepfold2/*/*.tif') for imgPath in imglist: print(imgPath) try: imgName = os.path.split(imgPath)[-1].split('.')[0] shpPath = imgPath.replace('tif', 'shp') anns = shp2imagexy(imgPath, shpPath) anns = [ann[:-1] for ann in anns] boxes = np.array(anns, dtype=np.uint16) img = cv2.imread(imgPath, cv2.IMREAD_LOAD_GDAL) # show results # fig = plt.imshow(img) # for i, box in enumerate(boxes): # rect = bbox_to_rect(box, 'red') # fig.axes.add_patch(rect) # fig.axes.text(rect.xy[0] + 24, rect.xy[1] + 10, "sheepfold", # va='center', ha='center', fontsize=6, color='blue', # bbox=dict(facecolor='m', lw=0)) # plt.show() w, h = img.shape[:2] for i, box in enumerate(boxes): w0, h0 = (128 - (box[3] - box[1])) // 2, (128 - (box[2] - box[0])) // 2 crop = img[np.clip(box[1]-w0, 0, w):np.clip(box[3]+w0, 0, w), np.clip(box[0]-h0, 0, w):np.clip(box[2]+h0, 0, w)] crop, ratio, (dw, dh) = letterbox(crop, new_shape=(128, 128)) # crop = img[box[1]:box[3], box[0]:box[2]] # plt.subplot(121) # plt.imshow(crop) # plt.subplot(122) # plt.imshow(img) # plt.show() savePath = os.path.join('pos', f'{imgName}_{i}.tif') cv2.imwrite(savePath, crop) except: continue
shp2imagexy.py
# -*- coding: utf-8 -*-from osgeo import ogrfrom osgeo import gdalfrom osgeo import osrimport numpy as npimport cv2 as cvimport matplotlib.pyplot as pltimport mathdef getSRSPair(dataset): ''' 获得给定数据的投影参考系和地理参考系 :param dataset: GDAL地理数据 :return: 投影参考系和地理参考系 ''' prosrs = osr.SpatialReference() prosrs.ImportFromWkt(dataset.GetProjection()) geosrs = prosrs.CloneGeogCS() return prosrs, geosrsdef xy_to_coor(x, y): lonlat_coordinate = [] L = 6381372 * math.pi*2 W = L H = L/2 mill = 2.3 lat = ((H/2-y)*2*mill)/(1.25*H) lat = ((math.atan(math.exp(lat))-0.25*math.pi)*180)/(0.4*math.pi) lon = (x-W/2)*360/W # TODO 最终需要确认经纬度保留小数点后几位 lonlat_coordinate.append((round(lon,7),round(lat,7))) return round(lon,7), round(lat,7)def geo2lonlat(dataset, x, y): ''' 将投影坐标转为经纬度坐标(具体的投影坐标系由给定数据确定) :param dataset: GDAL地理数据 :param x: 投影坐标x :param y: 投影坐标y :return: 投影坐标(x, y)对应的经纬度坐标(lon, lat) ''' prosrs, geosrs = getSRSPair(dataset) ct = osr.CoordinateTransformation(prosrs, geosrs) coords = ct.TransformPoint(x, y) return coords[:2]def lonlat2geo(dataset, lon, lat): ''' 将经纬度坐标转为投影坐标(具体的投影坐标系由给定数据确定) :param dataset: GDAL地理数据 :param lon: 地理坐标lon经度 :param lat: 地理坐标lat纬度 :return: 经纬度坐标(lon, lat)对应的投影坐标 ''' prosrs, geosrs = getSRSPair(dataset) ct = osr.CoordinateTransformation(geosrs, prosrs) coords = ct.TransformPoint(lon, lat) return coords[:2]def imagexy2geo(dataset, col, row): ''' 根据GDAL的六参数模型将影像图上坐标(行列号)转为投影坐标或地理坐标(根据具体数据的坐标系统转换) :param dataset: GDAL地理数据 :param row: 像素的行号 :param col: 像素的列号 :return: 行列号(row, col)对应的投影坐标或地理坐标(x, y) ''' trans = dataset.GetGeoTransform() print(trans) print(row,col) px = trans[0] + col * trans[1] + row * trans[2] py = trans[3] + col * trans[4] + row * trans[5] return px, pydef geo2imagexy01(dataset, x, y): ''' 根据GDAL的六 参数模型将给定的投影或地理坐标转为影像图上坐标(行列号) :param dataset: GDAL地理数据 :param x: 投影或地理坐标x :param y: 投影或地理坐标y :return: 影坐标或地理坐标(x, y)对应的影像图上行列号(row, col) ''' trans = dataset.GetGeoTransform() # trans = dataset a = np.array([[trans[1], trans[2]], [trans[4], trans[5]]]) b = np.array([x - trans[0], y - trans[3]]) return np.linalg.solve(a, b)def geo2imagexy(dataset, x, y): ''' 根据GDAL的六 参数模型将给定的投影或地理坐标转为影像图上坐标(行列号) :param dataset: GDAL地理数据 :param x: 投影或地理坐标x :param y: 投影或地理坐标y :return: 影坐标或地理坐标(x, y)对应的影像图上行列号(row, col) ''' trans = dataset.GetGeoTransform() #a = np.array([[trans[1], trans[2]], [trans[4], trans[5]]]) #b = np.array([x - trans[0], y - trans[3]]) #return np.linalg.solve(a, b) # 使用numpy的linalg.solve进行二元一次方程的求解 dTemp = trans[1] * trans[5] - trans[2] * trans[4] Xpixel = (trans[5] * (x - trans[0]) - trans[2] * (y - trans[3])) / dTemp Yline = (trans[1] * (y - trans[3]) - trans[4] * (x - trans[0])) / dTemp return [Xpixel, Yline]def shp2imagexy(imgPath, shpPath): dataset = gdal.Open(imgPath) ds = ogr.Open(shpPath, 1) if ds is None: print('Could not open folder') in_lyr = ds.GetLayer() lyr_dn = in_lyr.GetLayerDefn() feature = in_lyr.GetNextFeature() finalResult = [] while feature is not None: geom = feature.geometry() id = feature.GetField('cls') arr = np.array(feature.GetGeometryRef().GetEnvelope()) # print('before', arr) # coordsMin = lonlat2geo(dataset, arr[0], arr[3]) coordsMin = geo2imagexy(dataset, arr[0], arr[3]) # coordsMax = lonlat2geo(dataset, arr[1], arr[2]) coordsMax = geo2imagexy(dataset, arr[1], arr[2]) finalResult.append([coordsMin[0], coordsMin[1], coordsMax[0], coordsMax[1], id]) feature = in_lyr.GetNextFeature() return finalResultif __name__ == '__main__': img_filename = 'E:/2_1/tc/0000000001_V1/0000000001.tif' dst_filename = 'E:/2_1/tc/0000000001_V1/0000000001_V1_POLY.shp' finalResult = shp2imagexy(img_filename, dst_filename) img = cv.imread(img_filename, cv.IMREAD_LOAD_GDAL) # finalResult = np.array(finalResult) for bbox in finalResult: # xmin = min(bbox[0][0], bbox[1][0], bbox[2][0], bbox[3][0]) # ymin = min(bbox[0][1], bbox[1][1], bbox[2][1], bbox[3][1]) # xmax = max(bbox[0][0], bbox[1][0], bbox[2][0], bbox[3][0]) # ymax = max(bbox[0][1], bbox[1][1], bbox[2][1], bbox[3][1]) # cv.rectangle(img, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0, 100, 255), 5) print(bbox) cv.rectangle(img, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 100, 255), 5) plt.imshow(img) plt.show()
模型训练
模型选用图像分类模型,例如vgg、resnet等,加载预训练模型参数后,对全连接层进行修改,输出通道数改为类别数。
模型预测
见源码
源码地址
https://github.com/SonwYang/RemoteSensingSceneRecognition
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~