微前端架构如何改变企业的开发模式与效率提升
1236
2022-11-19
数据清洗之 异常值处理
异常值处理
指那些偏离正常范围的值,不是错误值异常值出现频率较低,但又会对实际项目分析造成偏差异常值一般用过箱线图法(分位差法)或者分布图(标准差法)来判断异常值检测可以使用均值的二倍标准差范围,也可以使用上下4分位数差方法异常值往往采取盖帽法或者数据离散化
import pandas as pdimport numpy as npimport
os.getcwd()
'D:\\Jupyter\\notebook\\Python数据清洗实战\\数据清洗之数据预处理'
os.chdir('D:\\Jupyter\\notebook\\Python数据清洗实战\\数据')
df = pd.read_csv('MotorcycleData.csv', encoding='gbk', na_values='Na')
def f(x): if '$' in str(x): x = str(x).strip('$') x = str(x).replace(',', '') else: x = str(x).replace(',', '') return float(x)
df['Price'] = df['Price'].apply(f)
df['Mileage'] = df['Mileage'].apply(f)
df.head(5)
Condition | Condition_Desc | Price | Location | Model_Year | Mileage | Exterior_Color | Make | Warranty | Model | ... | Vehicle_Title | OBO | Feedback_Perc | Watch_Count | N_Reviews | Seller_Status | Vehicle_Tile | Auction | Buy_Now | Bid_Count | |
0 | Used | mint!!! very low miles | 11412.0 | McHenry, Illinois, United States | 2013.0 | 16000.0 | Black | Harley-Davidson | Unspecified | Touring | ... | NaN | FALSE | 8.1 | NaN | 2427 | Private Seller | Clear | True | FALSE | 28.0 |
1 | Used | Perfect condition | 17200.0 | Fort Recovery, Ohio, United States | 2016.0 | 60.0 | Black | Harley-Davidson | Vehicle has an existing warranty | Touring | ... | NaN | FALSE | 100 | 17 | 657 | Private Seller | Clear | True | TRUE | 0.0 |
2 | Used | NaN | 3872.0 | Chicago, Illinois, United States | 1970.0 | 25763.0 | Silver/Blue | BMW | Vehicle does NOT have an existing warranty | R-Series | ... | NaN | FALSE | 100 | NaN | 136 | NaN | Clear | True | FALSE | 26.0 |
3 | Used | CLEAN TITLE READY TO RIDE HOME | 6575.0 | Green Bay, Wisconsin, United States | 2009.0 | 33142.0 | Red | Harley-Davidson | NaN | Touring | ... | NaN | FALSE | 100 | NaN | 2920 | Dealer | Clear | True | FALSE | 11.0 |
4 | Used | NaN | 10000.0 | West Bend, Wisconsin, United States | 2012.0 | 17800.0 | Blue | Harley-Davidson | NO WARRANTY | Touring | ... | NaN | FALSE | 100 | 13 | 271 | OWNER | Clear | True | TRUE | 0.0 |
5 rows × 22 columns
# 对价格异常值处理# 计算价格均值x_bar = df['Price'].mean()
# 计算价格标准差x_std = df['Price'].std()
# 异常值上限检测any(df['Price'] > x_bar + 2 * x_std)
True
# 异常值下限检测any(df['Price'] < x_bar - 2 * x_std)
False
# 描述性统计df['Price'].describe()
count 7493.000000mean 9968.811557std 8497.326850min 0.00000025% 4158.00000050% 7995.00000075% 13000.000000max 100000.000000Name: Price, dtype: float64
# 25% 分位数Q1 = df['Price'].quantile(q = 0.25)
# 75% 分位数Q3 = df['Price'].quantile(q = 0.75)
# 分位差IQR = Q3 -
any(df['Price'] > Q3 + 1.5 * IQR)
True
any(df['Price'] < Q1 - 1.5 * IQR)
False
import matplotlib.pyplot as
%matplotlib inline
df['Price'].plot(kind='box')
# 设置绘图风格plt.style.use('seaborn')# 绘制直方图df.Price.plot(kind='hist', bins=30, density=True)# 绘制核密度图df.Price.plot(kind='kde')# 图形展现plt.show()
# 用99分位数和1分位数替换# 计算P1和P99P99 = df['Price'].quantile(q=0.99)P1 = df['Price'].quantile(q=0.01)
P99
39995.32
df['Price_new'] = df['Price']
# 盖帽法df.loc[df['Price'] > P99, 'Price_new'] = P99df.loc[df['Price'] < P1, 'Price_new'] =
df[['Price', 'Price_new']].describe()
Price | Price_new | |
count | 7493.000000 | 7493.000000 |
mean | 9968.811557 | 9821.220873 |
std | 8497.326850 | 7737.092537 |
min | 0.000000 | 100.000000 |
25% | 4158.000000 | 4158.000000 |
50% | 7995.000000 | 7995.000000 |
75% | 13000.000000 | 13000.000000 |
max | 100000.000000 | 39995.320000 |
# df['Price_new'].plot(kind='box')
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~