app开发者平台在数字化时代的重要性与发展趋势解析
1321
2022-11-19
springboot实现以代码的方式配置sharding
目录关于依赖shardingsphere-jdbc-core-spring-boot-startershardingsphere-jdbc-core数据源DataSource原DataSourceShardingJdbcDataSource完整的ShardingJdbcDataSource配置分表策略主要的类其他的分表配置类groovy行表达式说明properties配置Sharding-jdbc的坑结语
多数项目可能是已经运行了一段时间,才开始使用sharding-jdbc。
本教程就如何配置sharding-jdbc,才能使代码改动最少,对功能影响最少(如果已经做了垂直分表,只有一部分子项目需要水平分表)给出一个简单方案。
关于依赖
shardingsphere-jdbc-core-spring-boot-starter
官方给出了Spring Boot Starter配置
但是基于已有项目,添加shardingsphere自动配置是很恶心的事
为什么配置了某个数据连接池的spring-boot-starter(比如druid)和 shardingsphere-jdbc-spring-boot-starter 时,系统启动会报错?
回答:
1. 因为数据连接池的starter(比如druid)可能会先加载并且其创建一个默认数据源,这将会使得 ShardingSphere‐JDBC 创建数据源时发生冲突。
2. 解决办法为,去掉数据连接池的starter 即可,sharing‐jdbc 自己会创建数据连接池。
一般项目已经有自己的DataSource了,如果使用shardingsphere-jdbc的自动配置,就必须舍弃原有的DataSource。
shardingsphere-jdbc-core
为了不放弃原有的DataSource配置,我们只引入shardingsphere-jdbc-core依赖
如果只水平分表,只支持mysql,可以排除一些无用的依赖
数据源DataSource
原DataSource
以Druid为例,原配置为
package com.xxx.common.autoConfiguration;
import java.util.ArrayList;
import java.util.List;
import javax.sql.DataSource;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean;
import org.springframework.boot.web.servlet.FilterRegistrationBean;
import org.springframework.boot.web.servlet.ServletRegistrationBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import com.alibaba.druid.filter.Filter;
import com.alibaba.druid.filter.logging.Slf4jLogFilter;
import com.alibaba.druid.filter.stat.StatFilter;
import com.alibaba.druid.pool.DruidDataSource;
import com.alibaba.druid.support.http.StatViewServlet;
import com.alibaba.druid.support.http.WebStatFilter;
import com.alibaba.druid.wall.WallConfig;
import com.alibaba.druid.wall.WallFilter;
import lombok.extern.slf4j.Slf4j;
/**
* @ClassName: DruidConfiguration
* @Description: Druid连接池配置
*/
@Configuration
@Slf4j
public class DruidConfiguration {
@Value("${spring.datasource.driver-class-name}")
private String driver;
@Value("${spring.datasource.url}")
private String url;
@Value("${spring.datasource.username}")
private String username;
@Value("${spring.datasource.password}")
private String password;
@Value("${datasource.druid.initialsize}")
private Integer druid_initialsize = 0;
@Value("${datasource.druid.maxactive}")
private Integer druid_maxactive = 20;
@Value("${datasource.druid.minidle}")
private Integer druid_minidle = 0;
@Value("${datasource.druid.maxwait}")
private Integer druid_maxwait = 30000;
@Bean
public ServletRegistrationBean druidServlet() {
ServletRegistrationBean reg = new ServletRegistrationBean();
reg.setServlet(new StatViewServlet());
reg.addUrlMappings("/druid/*");
reg.addInitParameter("loginUsername", "root");
reg.addInitParameter("loginPassword", "root!@#");
//reg.addInitParameter("logSlowSql", "");
return reg;
}
/**
*
* @Title: druidDataSource
* @Description: 数据库源Bean
* @param @return 参数说明
* @return DataSource 返回类型
* @throws
*/
@Bean
public DataSource druidDataSource() {
// 数据源
DruidDataSource druidDataSource = new DruidDataSource();
druidDataSource.setDriverClassName(driver); // 驱动
druidDataSource.setUrl(url); // 数据库连接地址
druidDataSource.setUsername(username); // 数据库用户名
druidDataSource.setPassword(password); // 数据库密码
druidDataSource.setInitialSize(druid_initialsize);// 初始化连接大小
druidDataSource.setMaxActive(druid_maxactive); // 连接池最大使用连接数量
druidDataSource.setMinIdle(druid_minidle); // 连接池最小空闲
druidDataSource.setMaxWait(druid_maxwait); // 获取连接最大等待时间
// 打开PSCache,并且指定每个连接上PSCache的大小
druidDataSource.setPoolPreparedStatements(false);
druidDataSource.setMaxPoolPreparedStatementPerConnectionSize(33);
//druidDataSource.setValidationQuery("SELECT 1"); // 用来检测连接是否有效的sql
druidDataSource.setTestOnBorrow(false); // 申请连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能。
druidDataSource.setTestOnReturn(false); // 归还连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能
druidDataSource.setTestWhileIdle(false); // 建议配置为true,不影响性能,并且保证安全性。申请连接的时候检测,如果空闲时间大于timeBetweenEvictionRunsMillis,执行validationQuery检测连接是否有效
druidDataSource.setTimeBetweenLogStatsMillis(60000); // 配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒
druidDataSource.setMinEvictableIdleTimeMillis(1800000); // 配置一个连接在池中最小生存的时间,单位是毫秒
// 当程序存在缺陷时,申请的连接忘记关闭,这时候,就存在连接泄漏
// 配置removeAbandoned对性能会有一些影响,建议怀疑存在泄漏之后再打开。在上面的配置中,如果连接超过30分钟未关闭,就会被强行回收,并且日志记录连接申请时的调用堆栈。
druidDataSource.setRemoveAbandoned(false); // 打开removeAbandoned功能
druidDataSource.setRemoveAbandonedTimeout(1800); // 1800秒,也就是30分钟
druidDataSource.setLogAbandoned(false); // 关闭abanded连接时输出错误日志
// 过滤器
List
filters.add(this.getStatFilter()); // 监控
//filters.add(this.getSlf4jLogFilter()); // 日志
filters.add(this.getWallFilter()); // 防火墙
druidDataSource.setProxyFilters(filters);
log.info("连接池配置信息:"+druidDataSource.getUrl());
return druidDataSource;
}
@Bean
public FilterRegistrationBean filterRegistrationBean() {
FilterRegistrationBean filterRegistrationBean = new FilterRegistrationBean();
WebStatFilter webStatFilter = new WebStatFilter();
filterRegistrationBean.setFilter(webStatFilter);
filterRegistrationBean.addUrlPatterns("/*");
filterRegistrationBean.addInitParameter("exclusions", "*.js,*.gif,*.jpg,*.png,*.css,*.ico,/druid/*");
return filterRegistrationBean;
}
/**
*
* @Title: getStatFilter
* @Description: 监控过滤器
* @param @return 参数说明
* @return StatFilter 返回类型
* @throws
*/
public StatFilter getStatFilter(){
StatFilter sFilter = new StatFilter();
//sFilter.setSlowSqlMillis(2000); // 慢sql,毫秒时间
sFilter.setLogSlowSql(false); // 慢sql日志
sFilter.setMergeSql(true); // sql合并优化处理
return sFilter;
}
/**
*
* @Title: getSlf4jLogFilter
* @Description: 监控日志过滤器
* @param @return 参数说明
* @return Slf4jLogFilter 返回类型
* @throws
*/
public Slf4jLogFilter getSlf4jLogFilter(){
Slf4jLogFilter slFilter = new Slf4jLogFilter();
slFilter.setResultSetLogEnabled(false);
slFilter.setStatementExecutableSqlLogEnable(false);
return slFilter;
}
/**
*
* @Title: getWallFilter
* @Description: 防火墙过滤器
* @param @return 参数说明
* @return WallFilter 返回类型
* @throws
*/
public WallFilter getWallFilter(){
WallFilter wFilter = new WallFilter();
wFilter.setDbType("mysql");
wFilter.setConfig(this.getWallConfig());
wFilter.setLogViolation(true); // 对被认为是攻击的SQL进行LOG.error输出
wFilter.setThrowException(true); // 对被认为是攻击的SQL抛出SQLExcepton
return wFilter;
}
/**
*
* @Title: getWallConfig
* @Description: 数据防火墙配置
* @param @return 参数说明
* @return WallConfig 返回类型
* @throws
*/
public WallConfig getWallConfig(){
WallConfig wConfig = new WallConfig();
wConfig.setDir("META-INF/druid/wall/mysql"); // 指定配置装载的目录
// 拦截配置-语句
wConfig.setTruncateAllow(false); // truncate语句是危险,缺省打开,若需要自行关闭
wConfig.setCreateTableAllow(true); // 是否允许创建表
wConfig.setAlterTableAllow(false); // 是否允许执行Alter Table语句
wConfig.setDropTableAllow(false); // 是否允许修改表
// 其他拦截配置
wConfig.setStrictSyntaxCheck(true); // 是否进行严格的语法检测,Druid SQL Parser在某些场景不能覆盖所有的SQL语法,出现解析SQL出错,可以临时把这个选项设置为false,同时把SQL反馈给Druid的开发者
wConfig.setConditionOpBitwseAllow(true); // 查询条件中是否允许有"&"、"~"、"|"、"^"运算符。
wConfig.setMinusAllow(true); // 是否允许SELECT * FROM A MINUS SELECT * FROM B这样的语句
wConfig.setIntersectAllow(true); // 是否允许SELECT * FROM A INTERSECT SELECT * FROM B这样的语句
//wConfig.setMetadataAllow(false); // 是否允许调用Connection.getMetadata方法,这个方法调用会暴露数据库的表信息
return wConfig;
}
}
可见,如果用自动配置的方式放弃这些原有的配置风险有多大
怎么改呢?
ShardingJdbcDataSource
第一步,创建一个interface,用以加载自定义的分表策略
可以在各个子项目中创建bean,实现此接口
public interface ShardingRuleSupport {
void configRule(ShardingRuleConfiguration shardingRuleConfig);
}
第二步,在DruidConfiguration.class中注入所有的ShardingRuleSupport
@Autowired(required = false)
private List
第三步,创建sharding-jdbc分表数据源
//包装Druid数据源
Map
//自定义一个名称为ds0的数据源名称,包装原有的Druid数据源,还可以再定义多个数据源
//因为只分表不分库,所有定义一个数据源就够了
dataSourceMap.put("ds0", druidDataSource);
//加载分表配置
ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
//要加载所有的ShardingRuleSupport实现bean,所以用for循环加载
for (ShardingRuleSupport support : shardingRuleSupport) {
support.configRule(shardingRuleConfig);
}
//加载其他配置
Properties properties = new Properties();
//由于未使用starter的自动装配,所以手动设置,是否显示分表sql
properties.put("sql.show", sqlShow);
//返回ShardingDataSource包装的数据源
return ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig, properties);
完整的ShardingJdbcDataSource配置
package com.xxx.common.autoConfiguration;
import java.util.ArrayList;
import java.util.List;
import javax.sql.DataSource;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean;
import org.springframework.boot.web.servlet.FilterRegistrationBean;
import org.springframework.boot.web.servlet.ServletRegistrationBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import com.alibaba.druid.filter.Filter;
import com.alibaba.druid.filter.logging.Slf4jLogFilter;
import com.alibaba.druid.filter.stat.StatFilter;
import com.alibaba.druid.pool.DruidDataSource;
import com.alibaba.druid.support.http.StatViewServlet;
import com.alibaba.druid.support.http.WebStatFilter;
import com.alibaba.druid.wall.WallConfig;
import com.alibaba.druid.wall.WallFilter;
import lombok.extern.slf4j.Slf4j;
/**
* @ClassName: DruidConfiguration
* @Description: Druid连接池配置
*/
@Configuration
@Slf4j
public class DruidConfiguration {
@Value("${spring.datasource.driver-class-name}")
private String driver;
@Value("${spring.datasource.url}")
private String url;
@Value("${spring.datasource.username}")
private String username;
@Value("${spring.datasource.password}")
private String password;
@Value("${datasource.druid.initialsize}")
private Integer druid_initialsize = 0;
@Value("${datasource.druid.maxactive}")
private Integer druid_maxactive = 20;
@Value("${datasource.druid.minidle}")
private Integer druid_minidle = 0;
@Value("${datasource.druid.maxwait}")
private Integer druid_maxwait = 30000;
/**
* 默认不显示分表SQL
*/
@Value("${spring.shardingsphere.props.sql.show:false}")
private boolean sqlShow;
@Autowired(required = false)
private List
@Bean
public ServletRegistrationBean druidServlet() {
ServletRegistrationBean reg = new ServletRegistrationBean();
reg.setServlet(new StatViewServlet());
reg.addUrlMappings("/druid/*");
reg.addInitParameter("loginUsername", "root");
reg.addInitParameter("loginPassword", "root!@#");
//reg.addInitParameter("logSlowSql", "");
return reg;
}
/**
*
* @Title: druidDataSource
* @Description: 数据库源Bean
* @param @return 参数说明
* @return DataSource 返回类型
* @throws
*/
@Bean
public DataSource druidDataSource() {
// 数据源
DruidDataSource druidDataSource = new DruidDataSource();
druidDataSource.setDriverClassName(driver); // 驱动
druidDataSource.setUrl(url); // 数据库连接地址
druidDataSource.setUsername(username); // 数据库用户名
druidDataSource.setPassword(password); // 数据库密码
druidDataSource.setInitialSize(druid_initialsize);// 初始化连接大小
druidDataSource.setMaxActive(druid_maxactive); // 连接池最大使用连接数量
druidDataSource.setMinIdle(druid_minidle); // 连接池最小空闲
druidDataSource.setMaxWait(druid_maxwait); // 获取连接最大等待时间
// 打开PSCache,并且指定每个连接上PSCache的大小
druidDataSource.setPoolPreparedStatements(false);
druidDataSource.setMaxPoolPreparedStatementPerConnectionSize(33);
//druidDataSource.setValidationQuery("SELECT 1"); // 用来检测连接是否有效的sql
druidDataSource.setTestOnBorrow(false); // 申请连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能。
druidDataSource.setTestOnReturn(false); // 归还连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能
druidDataSource.setTestWhileIdle(false); // 建议配置为true,不影响性能,并且保证安全性。申请连接的时候检测,如果空闲时间大于timeBetweenEvictionRunsMillis,执行validationQuery检测连接是否有效
druidDataSource.setTimeBetweenLogStatsMillis(60000); // 配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒
druidDataSource.setMinEvictableIdleTimeMillis(1800000); // 配置一个连接在池中最小生存的时间,单位是毫秒
// 当程序存在缺陷时,申请的连接忘记关闭,这时候,就存在连接泄漏
// 配置removeAbandoned对性能会有一些影响,建议怀疑存在泄漏之后再打开。在上面的配置中,如果连接超过30分钟未关闭,就会被强行回收,并且日志记录连接申请时的调用堆栈。
druidDataSource.setRemoveAbandoned(false); // 打开removeAbandoned功能
druidDataSource.setRemoveAbandonedTimeout(1800); // 1800秒,也就是30分钟
druidDataSource.setLogAbandoned(false); // 关闭abanded连接时输出错误日志
// 过滤器
List
filters.add(this.getStatFilter()); // 监控
//filters.add(this.getSlf4jLogFilter()); // 日志
filters.add(this.getWallFilter()); // 防火墙
druidDataSource.setProxyFilters(filters);
log.info("连接池配置信息:"+druidDataSource.getUrl());
if (shardingRuleSupport == null || shardingRuleSupport.isEmpty()) {
log.info("............分表配置为空,使用默认的数据源............");
return druidDataSource;
}
log.info("++++++++++++加载sharding jdbc配置++++++++++++");
//包装Druid数据源
Map
//自定义一个名称为ds0的数据源名称,包装原有的Druid数据源,还可以再定义多个数据源
//因为只分表不分库,所有定义一个数据源就够了
dataSourceMap.put("ds0", druidDataSource);
//加载分表配置
ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
//要加载所有的ShardingRuleSupport实现bean,所以用for循环加载
for (ShardingRuleSupport support : shardingRuleSupport) {
support.configRule(shardingRuleConfig);
}
//加载其他配置
Properties properties = new Properties();
//由于未使用starter的自动装配,所以手动设置,是否显示分表sql
properties.put("sql.show", sqlShow);
//返回ShardingDataSource包装的数据源
return ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig, properties);
}
@Bean
public FilterRegistrationBean filterRegistrationBean() {
FilterRegistrationBean filterRegistrationBean = new FilterRegistrationBean();
WebStatFilter webStatFilter = new WebStatFilter();
filterRegistrationBean.setFilter(webStatFilter);
filterRegistrationBean.addUrlPatterns("/*");
filterRegistrationBean.addInitParameter("exclusions", "*.js,*.gif,*.jpg,*.png,*.css,*.ico,/druid/*");
return filterRegistrationBean;
}
/**
*
* @Title: getStatFilter
* @Description: 监控过滤器
* @param @return 参数说明
* @return StatFilter 返回类型
* @throws
*/
public StatFilter getStatFilter(){
StatFilter sFilter = new StatFilter();
//sFilter.setSlowSqlMillis(2000); // 慢sql,毫秒时间
sFilter.setLogSlowSql(false); // 慢sql日志
sFilter.setMergeSql(true); // sql合并优化处理
return sFilter;
}
/**
*
* @Title: getSlf4jLogFilter
* @Description: 监控日志过滤器
* @param @return 参数说明
* @return Slf4jLogFilter 返回类型
* @throws
*/
public Slf4jLogFilter getSlf4jLogFilter(){
Slf4jLogFilter slFilter = new Slf4jLogFilter();
slFilter.setResultSetLogEnabled(false);
slFilter.setStatementExecutableSqlLogEnable(false);
return slFilter;
}
/**
*
* @Title: getWallFilter
* @Description: 防火墙过滤器
* @param @return 参数说明
* @return WallFilter 返回类型
* @throws
*/
public WallFilter getWallFilter(){
WallFilter wFilter = new WallFilter();
wFilter.setDbType("mysql");
wFilter.setConfig(this.getWallConfig());
wFilter.setLogViolation(true); // 对被认为是攻击的SQL进行LOG.error输出
wFilter.setThrowException(true); // 对被认为是攻击的SQL抛出SQLExcepton
return wFilter;
}
/**
*
* @Title: getWallConfig
* @Description: 数据防火墙配置
* @param @return 参数说明
* @return WallConfig 返回类型
* @throws
*/
public WallConfig getWallConfig(){
WallConfig wConfig = new WallConfig();
wConfig.setDir("META-INF/druid/wall/mysql"); // 指定配置装载的目录
// 拦截配置-语句
wConfig.setTruncateAllow(false); // truncate语句是危险,缺省打开,若需要自行关闭
wConfig.setCreateTableAllow(true); // 是否允许创建表
wConfig.setAlterTableAllow(false); // 是否允许执行Alter Table语句
wConfig.setDropTableAllow(false); // 是否允许修改表
// 其他拦截配置
wConfig.setStrictSyntaxCheck(true); // 是否进行严格的语法检测,Druid SQL Parser在某些场景不能覆盖所有的SQL语法,出现解析SQL出错,可以临时把这个选项设置为false,同时把SQL反馈给Druid的开发者
wConfig.setConditionOpBitwseAllow(true); // 查询条件中是否允许有"&"、"~"、"|"、"^"运算符。
wConfig.setMinusAllow(true); // 是否允许SELECT * FROM A MINUS SELECT * FROM B这样的语句
wConfig.setIntersectAllow(true); // 是否允许SELECT * FROM A INTERSECT SELECT * FROM B这样的语句
//wConfig.setMetadataAllow(false); // 是否允许调用Connection.getMetadata方法,这个方法调用会暴露数据库的表信息
return wConfig;
}
}
分表策略
主要的类
创建几个ShardingRuleSupport接口的实现Bean
@Component
public class DefaultShardingRuleAdapter implements ShardingRuleSupport {
@Override
public void configRule(ShardingRuleConfiguration shardingRuleConfiguration) {
Collection
TableRuleConfiguration ruleConfig1 = new TableRuleConfiguration("table_one", "ds0.table_one_$->{0..9}");
ComplexShardingStrategyConfiguration strategyConfig1 = new ComplexShardingStrategyConfiguration("column_id", new MyDefaultShardingAlgorithm());
ruleConfig1.setTableShardingStrategyConfig(strategyConfig1);
tableRuleConfigs.add(ruleConfig1);
TableRuleConfiguration ruleConfig2 = new TableRuleConfiguration("table_two", "ds0.table_two_$->{0..9}");
ComplexShardingStrategyConfiguration strategyConfig2 = new ComplexShttp://hardingStrategyConfiguration("column_id", new MyDefaultShardingAlgorithm());
ruleConfig2.setTableShardingStrategyConfig(strategyConfig2);
tableRuleConfigs.add(ruleConfig2);
}
}
@Component
public class CustomShardingRuleAdapter implements ShardingRuleSupport {
@Override
public void configRule(ShardingRuleConfiguration shardingRuleConfiguration) {
Collection
TableRuleConfiguration ruleConfig1 = new TableRuleConfiguration(MyCustomShardingUtil.LOGIC_TABLE_NAME, MyCustomShardingUtil.ACTUAL_DATA_NODES);
ComplexShardingStrategyConfiguration strategyConfig1 = new ComplexShardingStrategyConfiguration(MyCustomShardingUtil.SHARDING_COLUMNS, new MyCustomShardingAlgorithm());
ruleConfig1.setTableShardingStrategyConfig(strategyConfig1);
tableRuleConfigs.add(ruleConfig1);
}
}
其他的分表配置类
public class MyDefaultShardingAlgorithm implements ComplexKeysShardingAlgorithm
public String getShardingKey () {
return "column_id";
}
@Override
public Collection
Collection
String logicTableName = shardingValue.getLogicTableName() + "_";
Map
for (String targetName : availableTargetNameMap) {
String endStr = StringUtils.substringAfter(targetName, logicTableName);
availableTargetNameMap.put(endStr, targetName);
}
int size = availableTargetNames.size();
//=,in
Collection
if (shardingColumnValues != null) {
for (String shardingColumnValue : shardingColumnValues) {
String modStr = Integer.toString(Math.abs(shardingColumnValue .hashCode()) % size);
String actualTableName = availableTargetNameMap.get(modStr);
if (StringUtils.isNotEmpty(actualTableName)) {
col.add(actualTableName);
}
}
}
//between and
//shardingValue.getColumnNameAndRangeValuesMap().get(this.getShardingKey());
... ...
//如果分表列不是有序的,则between and无意义,没有必要实现
return col;
}
}
public class MyCustomShardingAlgorithm extends MyDefaultShardingAlgorithm implements ComplexKeysShardingAlgorithm
@Override
public String getShardingKey () {
return MyCustomShardingUtil.SHARDING_COLUMNS;
}
@Override
public Collection
Collection
String logicTableName = shardingValue.getLogicTableName() + "_";
Map
for (String targetName : availableTargetNameMap) {
String endStr = StringUtils.substringAfter(targetName, logicTableName);
availableTargetNameMap.put(endStr, targetName);
}
Map
int count = (int) specialActualTableNameMap.values().stream().distinct().count();
int size = availableTargetNames.size() - count;
//=,in
Collection
if (shardingColumnValues != null) {
for (String shardingColumnValue : shardingColumnValues) {
String specialActualTableName = specialActualTableNameMap.get(shardingColumnValue);
if (StringUtils.isNotEmpty(specialActualTableName)) {
col.add(specialActualTableName);
continue;
}
String modStr = Integer.toString(Math.abs(shardingColumnValue .hashCode()) % size);
String actualTableName = availableTargetNameMap.get(modStr);
if (StringUtils.isNotEmpty(actualTableName)) {
col.add(actualTableName);
}
}
}
//between and
//shardingValue.getColumnNameAndRangeValuesMap().get(this.getShardingKey());
... ...
//如果分表列不是有序的,则between and无意义,没有必要实现
return col;
}
}
@Component
public class MyCustomShardingUtil {
/**
* 逻辑表名
*/
public static final String LOGIC_TABLE_NAME = "table_three";
/**
* 分片字段
*/
public static final String SHARDING_COLUMNS = "column_name";
/**
* 添加指定分片表的后缀
*/
private static final String[] SPECIAL_NODES = new String[]{"0sp", "1sp"};
// ds0.table_three_$->{((0..9).collect{t -> t.toString()} << ['0sp','1sp']).flatten()}
public static final String ACTUAL_DATA_NODES = "ds0." + LOGIC_TABLE_NAME + "_$->{((0..9).collect{t -> t.toString()} << "
+ "['" + SPECIAL_NODES[0] + "','" + SPECIAL_NODES[1] + "']"
+ ").flatten()}";
private static final List
@Value("${special.table_three.sp0.ids:null}")
private void setSpecialList0(String ids) {
if (StringUtils.isBlank(ids)) {
return;
}
String[] idSplit = StringUtils.split(ids, ",");
for (String id : idSplit) {
String trimId = StringUtils.trim(id);
if (StringUtils.isEmpty(trimId)) {
continue;
}
specialList0.add(trimId);
}
}
private static final List
@Value("${special.table_three.sp1.ids:null}")
private void setSpecialList1(String ids) {
if (StringUtils.isBlank(ids)) {
return;
}
String[] idSplit = StringUtils.split(ids, ",");
for (String id : idSplit) {
String trimId = StringUtils.trim(id);
if (StringUtils.isEmpty(trimId)) {
continue;
}
specialList1.add(trimId);
}
}
private static class SpecialActualTableNameHolder {
private static volatile Map
static {
for (String specialId : specialList0) {
specialActualTableNameMap.put(specialId, LOGIC_TABLE_NAME + "_" + SPECIAL_NODES[0]);
}
for (String specialId : specialList1) {
specialActualTableNameMap.put(specialId, LOGIC_TABLE_NAME + "_" + SPECIAL_NODES[1]);
}
}
}
/**
* @return 指定ID的表名映射
*/
public static Map
return SpecialActualTableNameHolder.specialActualTableNameMap;
}
}
ShardingAlgorithm接口的子接口除了ComplexKeysShardingAlgorithm,还有HintShardingAlgorithm,PreciseShardingAlgorithm,RangeShardingAlgorithm;本教程使用了更通用的ComplexKeysShardingAlgorithm接口。
配置TableRuleConfiguration类时,使用了两个参数的构造器
public TableRuleConfiguration(String logicTable, String actualDataNodes) {}
TableRuleConfiguration类还有一个参数的的构造器,没有实际数据节点,是给广播表用的
public TableRuleConfiguration(String logicTable) {}
groovy行表达式说明
ds0.table_three_$->{((0…9).collect{t -> t.toString()} << [‘0sp',‘1sp']).flatten()}
sharding-jdbc的groovy行表达式支持$->{…}或${…},为了避免与spring的占位符混淆,官方推荐使用$->{…}
(0..9) 获得0到9的集合
(0..9).collect{t -> t.toString()} 数值0到9的集合转换成字符串0到9的数组
(0..9).collect{t -> t.toString()} << ['0sp','1sp'] 字符串0到9的数组合并['0sp','1sp']数组,结果为 ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ['0sp','1sp']]
flatten() 扁平化数组,结果为 ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0sp', '1sp']
properties配置
#是否显示分表SQL,默认为false
spring.shardingsphere.props.sql.show=true
#指定哪些列值入指定的分片表,多个列值以“,”分隔
#column_name为9997,9998,9999的记录存入表table_three_0sp中
#column_name为1111,2222,3333,4444,5555的记录存入表table_three_1sp中
#其余的值哈希取模后,存入对应的table_three_模数表中
special.table_three.sp0.ids=9997,9998,9999
special.table_three.sp1.ids=1111,2222,3333,4444,5555
Sharding-jdbc的坑
任何SQL,只要select子句中包含动态参数,则抛出类型强转异常
禁止修改分片键,如果update的set子句中存在分片键,则不能执行sql
结语
至此,简单的单表分表策略就配置完成了
代码没有好坏,合适的就是最好的
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~