阿里开源Canal--简介

网友投稿 998 2022-11-16

阿里开源Canal--简介

阿里开源Canal--简介

canal是阿里巴巴旗下的一款开源项目,纯Java开发。基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了MySQL(也支持mariaDB)。

背景

早期,阿里巴巴B2B公司因为存在杭州和美国双机房部署,存在跨机房同步的业务需求。不过早期的数据库同步业务,主要是基于trigger的方式获取增量变更,不过从2010年开始,阿里系公司开始逐步的尝试基于数据库的日志解析,获取增量变更进行同步,由此衍生出了增量订阅&消费的业务,从此开启了一段新纪元。ps. 目前内部使用的同步,已经支持mysql5.x和oracle部分版本的日志解析

基于日志增量订阅&消费支持的业务:

数据库镜像数据库实时备份多级索引 (卖家和买家各自分库索引)search build业务cache刷新价格变化等重要业务消息

项目介绍

名称:canal [kə'næl]

译意: 水道/管道/沟渠

语言: 纯java开发

定位: 基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了mysql

关键词: mysql binlog parser / real-time / queue&topic

工作原理

mysql主备复制实现

从上层来看,复制分成三步:

master将改变记录到二进制日志(binary log)中(这些记录叫做二进制日志事件,binary log events,可以通过show binlog events进行查看);slave将master的binary log events拷贝到它的中继日志(relay log);slave重做中继日志中的事件,将改变反映它自己的数据。

canal的工作原理:

原理相对比较简单:

canal模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议mysql master收到dump请求,开始推送binary log给slave(也就是canal)canal解析binary log对象(原始为byte流)

架构

说明:

server代表一个canal运行实例,对应于一个jvminstance对应于一个数据队列 (1个server对应1..n个instance)

instance模块:

eventParser (数据源接入,模拟slave协议和master进行交互,协议解析)eventSink (Parser和Store链接器,进行数据过滤,加工,分发的工作)eventStore (数据存储)metaManager (增量订阅&消费信息管理器)

知识科普

mysql的Binlay Log介绍

(​​filename + binlog position,进行定位mysql的binlog数据格式,按照生成的方式,主要分为:statement-based、row-based、mixed。

mysql> show variables like 'binlog_format'; +---------------+-------+ | Variable_name | Value | +---------------+-------+ | binlog_format | ROW | +---------------+-------+ 1 row in set (0.00 sec)

目前canal支持所有模式的增量订阅(但配合同步时,因为statement只有sql,没有数据,无法获取原始的变更日志,所以一般建议为ROW模式)

EventParser设计

大致过程:

整个parser过程大致可分为几步:

Connection获取上一次解析成功的位置 (如果第一次启动,则获取初始指定的位置或者是当前数据库的binlog位点)Connection建立链接,发送BINLOG_DUMP指令// 0. write command number// 1. write 4 bytes bin-log position to start at// 2. write 2 bytes bin-log flags// 3. write 4 bytes server id of the slave// 4. write bin-log file nameMysql开始推送Binaly Log接收到的Binaly Log的通过Binlog parser进行协议解析,补充一些特定信息// 补充字段名字,字段类型,主键信息,unsigned类型处理传递给EventSink模块进行数据存储,是一个阻塞操作,直到存储成功存储成功后,定时记录Binaly Log位置

EventSink设计

说明:

数据过滤:支持通配符的过滤模式,表名,字段内容等数据路由/分发:解决1:n (1个parser对应多个store的模式)数据归并:解决n:1 (多个parser对应1个store)数据加工:在进入store之前进行额外的处理,比如join

数据1:n业务

为了合理的利用数据库资源, 一般常见的业务都是按照schema进行隔离,然后在mysql上层或者dao这一层面上,进行一个数据源路由,屏蔽数据库物理位置对开发的影响,阿里系主要是通过cobar/tddl来解决数据源路由问题。

所以,一般一个数据库实例上,会部署多个schema,每个schema会有由1个或者多个业务方关注

数据n:1业务

同样,当一个业务的数据规模达到一定的量级后,必然会涉及到水平拆分和垂直拆分的问题,针对这些拆分的数据需要处理时,就需要链接多个store进行处理,消费的位点就会变成多份,而且数据消费的进度无法得到尽可能有序的保证。

所以,在一定业务场景下,需要将拆分后的增量数据进行归并处理,比如按照时间戳/全局id进行排序归并.

EventStore设计

1. 目前仅实现了Memory内存模式,后续计划增加本地file存储,mixed混合模式2. 借鉴了Disruptor的RingBuffer的实现思路

RingBuffer设计:

定义了3个cursor

Put : Sink模块进行数据存储的最后一次写入位置Get : 数据订阅获取的最后一次提取位置Ack : 数据消费成功的最后一次消费位置

借鉴Disruptor的RingBuffer的实现,将RingBuffer拉直来看:

image.png

实现说明:

Put/Get/Ack cursor用于递增,采用long型存储buffer的get操作,通过取余或者与操作。(与操作: cusor & (size - 1) , size需要为2的指数,效率比较高)

Instance设计

instance代表了一个实际运行的数据队列,包括了EventPaser,EventSink,EventStore等组件。

抽象了CanalInstanceGenerator,主要是考虑配置的管理方式:

manager方式: 和你自己的内部web console/manager系统进行对接。(目前主要是公司内部使用)spring方式:基于spring xml + properties进行定义,构建spring配置.

Server设计

server代表了一个canal的运行实例,为了方便组件化使用,特意抽象了Embeded(嵌入式) / Netty(网络访问)的两种实现

Embeded : 对latency和可用性都有比较高的要求,自己又能hold住分布式的相关技术(比如failover)Netty : 基于netty封装了一层网络协议,由canal server保证其可用性,采用的pull模型,当然latency会稍微打点折扣,不过这个也视情况而定。(阿里系的notify和metaq,典型的push/pull模型,目前也逐步的在向pull模型靠拢,push在数据量大的时候会有一些问题)

增量订阅/消费设计

具体的协议格式,可参见:​​CanalProtocol.proto​​

get/ack/rollback协议介绍:

Message getWithoutAck(int batchSize),允许指定batchSize,一次可以获取多条,每次返回的对象为Message,包含的内容为:a. batch id 唯一标识b. entries 具体的数据对象,对应的数据对象格式:​​​EntryProtocol.proto​​void rollback(long batchId),顾命思议,回滚上次的get请求,重新获取数据。基于get获取的batchId进行提交,避免误操作void ack(long batchId),顾命思议,确认已经消费成功,通知server删除数据。基于get获取的batchId进行提交,避免误操作

canal的get/ack/rollback协议和常规的jms协议有所不同,允许get/ack异步处理,比如可以连续调用get多次,后续异步按顺序提交ack/rollback,项目中称之为流式api.

流式api设计的好处:

get/ack异步化,减少因ack带来的网络延迟和操作成本 (99%的状态都是处于正常状态,异常的rollback属于个别情况,没必要为个别的case牺牲整个性能)get获取数据后,业务消费存在瓶颈或者需要多进程/多线程消费时,可以不停的轮询get数据,不停的往后发送任务,提高并行化. (作者在实际业务中的一个case:业务数据消费需要跨中美网络,所以一次操作基本在200ms以上,为了减少延迟,所以需要实施并行化)

流式api设计:

每次get操作都会在meta中产生一个mark,mark标记会递增,保证运行过程中mark的唯一性每次的get操作,都会在上一次的mark操作记录的cursor继续往后取,如果mark不存在,则在last ack cursor继续往后取进行ack时,需要按照mark的顺序进行数序ack,不能跳跃ack. ack会删除当前的mark标记,并将对应的mark位置更新为last ack cusor一旦出现异常情况,客户端可发起rollback情况,重新置位:删除所有的mark, 清理get请求位置,下次请求会从last ack cursor继续往后取

数据对象格式:​​EntryProtocol.proto​​

Entry Header logfileName [binlog文件名] logfileOffset [binlog position] executeTime [binlog里记录变更发生的时间戳] schemaName [数据库实例] tableName [表名] eventType [insert/update/delete类型] entryType [事务头BEGIN/事务尾END/数据ROWDATA] storeValue [byte数据,可展开,对应的类型为RowChange]RowChangeisDdl [是否是ddl变更操作,比如create table/drop table]sql [具体的ddl sql]rowDatas [具体insert/update/delete的变更数据,可为多条,1个binlog event事件可对应多条变更,比如批处理]beforeColumns [Column类型的数组]afterColumns [Column类型的数组]Columnindex [column序号]sqlType [jdbc type]name [column name]isKey [是否为主键]updated [是否发生过变更]isNull [值是否为null]value [具体的内容,注意为文本]

说明:

可以提供数据库变更前和变更后的字段内容,针对binlog中没有的name,isKey等信息进行补全可以提供ddl的变更语句

HA机制设计

canal的ha分为两部分,canal server和canal client分别有对应的ha实现

canal server: 为了减少对mysql dump的请求,不同server上的instance要求同一时间只能有一个处于running,其他的处于standby状态.canal client: 为了保证有序性,一份instance同一时间只能由一个canal client进行get/ack/rollback操作,否则客户端接收无法保证有序。

整个HA机制的控制主要是依赖了zookeeper的几个特性,watcher和EPHEMERAL节点(和session生命周期绑定),可以看下我之前zookeeper的相关文章。

Canal Server:

image.png

大致步骤:

canal server要启动某个canal instance时都先向zookeeper进行一次尝试启动判断 (实现:创建EPHEMERAL节点,谁创建成功就允许谁启动)创建zookeeper节点成功后,对应的canal server就启动对应的canal instance,没有创建成功的canal instance就会处于standby状态一旦zookeeper发现canal server A创建的节点消失后,立即通知其他的canal server再次进行步骤1的操作,重新选出一个canal server启动instance.canal client每次进行connect时,会首先向zookeeper询问当前是谁启动了canal instance,然后和其建立链接,一旦链接不可用,会重新尝试connect.

Canal Client的方式和canal server方式类似,也是利用zookeeper的抢占EPHEMERAL节点的方式进行控制.

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:深入理解 Golang 中的 new 和 make 是什么, 差异在哪?
下一篇:Scrapy 架构流程图(官方文档) - 翻译整理
相关文章

 发表评论

暂时没有评论,来抢沙发吧~