用Keras解决机器学习问题!

网友投稿 1078 2022-11-13

用Keras解决机器学习问题!

用Keras解决机器学习问题!

Datawhale干货

作者:皮钱超,厦门大学,Datawhale成员

深度学习框架Keras入门项目

本文介绍3个案例来帮助读者认识和入门深度学习框架Keras。3个案例解决3个问题:回归、二分类、多分类.

本文审稿人:​​牧小熊​​,Datawhale成员

Keras官网

为什么选择Keras

相信很多小伙伴在入门深度学习时候首选框架应该是TensorFlow或者Pytorch。在如今无数深度学习框架中,为什么要使用 Keras 而非其他?整理自Keras中文官网:

Keras 优先考虑开发人员的经验Keras 被工业界和学术界广泛采用Keras 可以轻松将模型转化为产品Keras 支持多个后端引擎Keras 拥有强大的多 GPU 和分布式训练支持Keras 的发展得到关键公司的支持,比如:谷歌、微软等

详细信息见中文官网:pandas as pdimport numpy as npimport matplotlib.pyplot as plt%matplotlib inlinefrom sklearn import datasets from sklearn.preprocessing import MinMaxScalerfrom sklearn.preprocessing import StandardScalerfrom sklearn.model_selection import train_test_splitimport tensorflow as tffrom keras import modelsfrom keras import layers from keras.models import load_modelnp.random.seed(1234)

回归案例

回归案例中使用的是Keras自带的波士顿房价数据集。

导入数据

In [2]:

from keras.datasets import boston_housing(train_X, train_y), (test_X, test_y) = boston_housing.load_data()

In [3]:

train_X.shape # 数据形状

Out[3]:

(404, 13)

In [4]:

train_X[:3] # 特征向量值

Out[4]:

array([[1.23247e+00, 0.00000e+00, 8.14000e+00, 0.00000e+00, 5.38000e-01, 6.14200e+00, 9.17000e+01, 3.97690e+00, 4.00000e+00, 3.07000e+02, 2.10000e+01, 3.96900e+02, 1.87200e+01], [2.17700e-02, 8.25000e+01, 2.03000e+00, 0.00000e+00, 4.15000e-01, 7.61000e+00, 1.57000e+01, 6.27000e+00, 2.00000e+00, 3.48000e+02, 1.47000e+01, 3.95380e+02, 3.11000e+00], [4.89822e+00, 0.00000e+00, 1.81000e+01, 0.00000e+00, 6.31000e-01, 4.97000e+00, 1.00000e+02, 1.33250e+00, 2.40000e+01, 6.66000e+02, 2.02000e+01, 3.75520e+02, 3.26000e+00]])

In [5]:

train_y[:3] # 标签值

Out[5]:

array([15.2, 42.3, 50. ])

数据标准化

神经网络中一般输入的都是较小数值的数据,数据之间的差异不能过大。现将特征变量的数据进行标准化处理

In [6]:

train_X[:3] # 处理前

Out[6]:

array([[1.23247e+00, 0.00000e+00, 8.14000e+00, 0.00000e+00, 5.38000e-01, 6.14200e+00, 9.17000e+01, 3.97690e+00, 4.00000e+00, 3.07000e+02, 2.10000e+01, 3.96900e+02, 1.87200e+01], [2.17700e-02, 8.25000e+01, 2.03000e+00, 0.00000e+00, 4.15000e-01, 7.61000e+00, 1.57000e+01, 6.27000e+00, 2.00000e+00, 3.48000e+02, 1.47000e+01, 3.95380e+02, 3.11000e+00], [4.89822e+00, 0.00000e+00, 1.81000e+01, 0.00000e+00, 6.31000e-01, 4.97000e+00, 1.00000e+02, 1.33250e+00, 2.40000e+01, 6.66000e+02, 2.02000e+01, 3.75520e+02, 3.26000e+00]])

针对训练集的数据做标准化处理:减掉均值再除以标准差

In [7]:

mean = train_X.mean(axis=0) # 均值train_X = train_X - mean # 数值 - 均值std = train_X.std(axis=0) # 标准差train_X /= std # 再除以标准差train_X # 处理后

针对测集的数据处理:使用训练集的均值和标准差

In [8]:

test_X -= mean # 减掉均值test_X /= std # 除以标准差

构建网络

In [9]:

train_X.shape

Out[9]:

(404, 13)

In [10]:

model = models.Sequential()model.add(tf.keras.layers.Dense(64, activation="relu", input_shape=(train_X.shape[1], )))model.add(tf.keras.layers.Dense(64, activation="relu"))model.add(tf.keras.layers.Dense(1)) # 最后的密集连接层,不用激活函数model.compile(optimizer="rmsprop", # 优化器 loss="mse", # 损失函数 metrics=["mae"] # 评估指标:平均绝对误差 )

网络架构

In [11]:

model.summary()

训练网络

In [12]:

history = model.fit(train_X, # 特征 train_y, # 输出 epochs = 100, # 模型训练100轮 validation_split=0.2, batch_size=1, verbose=0 # 静默模式;如果=1表示日志模式,输出每轮训练的结果 )

保存模型

In [13]:

model.save("my_model.h5") # 保存模型del model # 删除现有的模型

In [14]:

model = load_model('my_model.h5') # 加载模型

评估模型

返回的是loss和mae的取值

In [15]:

model.evaluate(test_X, test_y)4/4 [==============================] - 0s 6ms/step - loss: 16.1072 - mae: 2.5912

Out[15]:

[16.107179641723633, 2.5912036895751953]

history对象

In [16]:

type(history) # 回调的History对象

Out[16]:

keras.callbacks.History

In [17]:

type(history.history) # 字典

Out[17]:

dict

In [18]:

查看history.history字典对象中的信息:keys就是每个评价指标,values其实就是每次输出的指标对应的值

for keys,_ in history.history.items(): print(keys)lossmaeval_lossval_mae

In [19]:

len(history.history["loss"])

Out[19]:

100

In [20]:

history.history["loss"][:10]

Out[20]:

[197.65003967285156, 32.76368713378906, 22.73907470703125, 18.689529418945312, 16.765336990356445, 15.523008346557617, 14.131484985351562, 13.04631519317627, 12.62230396270752, 12.256169319152832]

loss-mae

In [21]:

# 损失绘图import matplotlib.pyplot as plthistory_dict = history.history loss_values = history_dict["loss"]mae_values = history_dict["mae"]epochs = range(1,len(loss_values) + 1)# 训练plt.plot(epochs, # 循环轮数 loss_values, # loss取值 "r", # 红色 label="loss" )plt.plot(epochs, mae_values, "b", label="mae" )plt.title("Loss and Mae of Training")plt.xlabel("Epochs")plt.legend()plt.show()

二分类

使用的是sklearn中自带的cancer数据集

导入数据

In [22]:

cancer=datasets.load_breast_cancer()cancer

部分数据信息截图

# 生成特征数据和标签数据X = cancer.datay = cancer.target

数据标准化

In [24]:

X[:2] # 转换前

Out[24]:

array([[1.799e+01, 1.038e+01, 1.228e+02, 1.001e+03, 1.184e-01, 2.776e-01, 3.001e-01, 1.471e-01, 2.419e-01, 7.871e-02, 1.095e+00, 9.053e-01, 8.589e+00, 1.534e+02, 6.399e-03, 4.904e-02, 5.373e-02, 1.587e-02, 3.003e-02, 6.193e-03, 2.538e+01, 1.733e+01, 1.846e+02, 2.019e+03, 1.622e-01, 6.656e-01, 7.119e-01, 2.654e-01, 4.601e-01, 1.189e-01], [2.057e+01, 1.777e+01, 1.329e+02, 1.326e+03, 8.474e-02, 7.864e-02, 8.690e-02, 7.017e-02, 1.812e-01, 5.667e-02, 5.435e-01, 7.339e-01, 3.398e+00, 7.408e+01, 5.225e-03, 1.308e-02, 1.860e-02, 1.340e-02, 1.389e-02, 3.532e-03, 2.499e+01, 2.341e+01, 1.588e+02, 1.956e+03, 1.238e-01, 1.866e-01, 2.416e-01, 1.860e-01, 2.750e-01, 8.902e-02]])

In [25]:

ss = StandardScaler()X = ss.fit_transform(X)X[:2] # 转换后

Out[25]:

array([[ 1.09706398e+00, -2.07333501e+00, 1.26993369e+00, 9.84374905e-01, 1.56846633e+00, 3.28351467e+00, 2.65287398e+00, 2.53247522e+00, 2.21751501e+00, 2.25574689e+00, 2.48973393e+00, -5.65265059e-01, 2.83303087e+00, 2.48757756e+00, -2.14001647e-01, 1.31686157e+00, 7.24026158e-01, 6.60819941e-01, 1.14875667e+00, 9.07083081e-01, 1.88668963e+00, -1.35929347e+00, 2.30360062e+00, 2.00123749e+00, 1.30768627e+00, 2.61666502e+00, 2.10952635e+00, 2.29607613e+00, 2.75062224e+00, 1.93701461e+00], [ 1.82982061e+00, -3.53632408e-01, 1.68595471e+00, 1.90870825e+00, -8.26962447e-01, -4.87071673e-01, -2.38458552e-02, 5.48144156e-01, 1.39236330e-03, -8.68652457e-01, 4.99254601e-01, -8.76243603e-01, 2.63326966e-01, 7.42401948e-01, -6.05350847e-01, -6.92926270e-01, -4.40780058e-01, 2.60162067e-01, -8.05450380e-01, -9.94437403e-02, 1.80592744e+00, -3.69203222e-01, 1.53512599e+00, 1.89048899e+00, -3.75611957e-01, -4.30444219e-01, -1.46748968e-01, 1.08708430e+00, -2.43889668e-01, 2.81189987e-01]])

数据集划分

In [26]:

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=123)X_train.shape

Out[26]:

(455, 30)

In [27]:

y_train.shape

Out[27]:

(455,)

In [28]:

X_test.shape # 测试集长度是114

Out[28]:

(114, 30)

构建网络

这是一个二分类的问题,最后一层使用sigmoid作为激活函数

In [29]:

model = models.Sequential()# 输入层model.add(tf.keras.layers.Dense(16, activation="relu", input_shape=(X_train.shape[1],)))# 隐藏层model.add(tf.keras.layers.Dense(16, activation="relu"))# 输出层model.add(tf.keras.layers.Dense(1, activation="sigmoid"))

网络架构

In [30]:

model.summary()

编译模型

在keras搭建的神经网络中,如果输出是概率值的模型,损失函数最好使用:交叉熵crossentropy

常用目标损失函数的选择:

binary_crossentropy:针对二分类问题的交叉熵categorical_crossentropy:针对多分类问题的交叉熵

两种不同的指定方法:

# 方法1model.compile(loss='mean_squared_error', optimizer='rmsprop')# 方法2from keras import lossesmodel.compile(loss=losses.mean_squared_error, optimizer='rmsprop')

常用的性能评估函数:

binary_accuracy: 针对二分类问题,计算在所有预测值上的平均正确率categorical_accuracy:针对多分类问题,计算再所有预测值上的平均正确率sparse_categorical_accuracy:与categorical_accuracy相同,在对稀疏的目标值预测时有用

In [31]:

# 配置优化器from keras import optimizersmodel.compile(optimizer="rmsprop", # 优化器 loss="binary_crossentropy", # 目标损失函数 metrics=["acc"] # 评价指标函数 acc--->accuracy )

训练网络

In [32]:

len(X_train)

Out[32]:

455

In [33]:

history = model.fit(X_train, # 特征向量 y_train, # 标签向量 epochs=20, # 训练轮数 batch_size=25 # 每次训练的样本数 )history

评估模型

In [34]:

model.evaluate(X_test, y_test)4/4 [==============================] - 0s 3ms/step - loss: 0.0879 - acc: 0.9825

Out[34]:

[0.08793728798627853, 0.9824561476707458]

可以看到模型的精度达到了惊人的98.2%!

loss-acc

In [35]:

for keys, _ in history.history.items(): print(keys)lossacc

In [36]:

# 损失绘图import matplotlib.pyplot as plthistory_dict = history.history loss_values = history_dict["loss"]acc_values = history_dict["acc"]epochs = range(1,len(loss_values) + 1)# 训练plt.plot(epochs, # 循环轮数 loss_values, # loss取值 "r", # 红色 label="loss" )plt.plot(epochs, acc_values, "b", label="acc" )plt.title("Loss and Acc of Training")plt.xlabel("Epochs")plt.legend()plt.show()

可以看到:随着轮数的增加loss在逐渐降低,而精度acc在逐渐增加,趋近于1

多分类案例

多分类的案例使用sklearn中自带的iris数据集,数据集不多介绍。最终结果是存在3个类的。

导入数据

In [37]:

iris = datasets.load_iris()

In [38]:

# 特征数据和标签数据X = iris.datay = iris.targetX[:2]

Out[38]:

array([[5.1, 3.5, 1.4, 0.2], [4.9, 3. , 1.4, 0.2]])

In [39]:

y[:3]

Out[39]:

array([0, 0, 0])

数据标准化

In [40]:

ss = StandardScaler()X = ss.fit_transform(X)

数据集划分

In [41]:

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=123)X_train.shape

Out[41]:

(120, 4)

标签向量化

In [42]:

y_test[:5] # 转换前

Out[42]:

array([1, 2, 2, 1, 0])

In [43]:

# 内置方法实现标签向量化from keras.utils.np_utils import to_categoricaly_train = to_categorical(y_train)y_test = to_categorical(y_test)

In [44]:

y_test[:5] # 转换后

Out[44]:

array([[0., 1., 0.], [0., 0., 1.], [0., 0., 1.], [0., 1., 0.], [1., 0., 0.]], dtype=float32)

In [45]:

X_train[:3]

Out[45]:

array([[ 1.88617985, -0.59237301, 1.33113254, 0.92230284], [ 0.18982966, -1.97355361, 0.70592084, 0.3957741 ], [-1.38535265, 0.32841405, -1.22655167, -1.3154443 ]])

构建模型

In [46]:

model = models.Sequential()model.add(tf.keras.layers.Dense(64, activation="relu", input_shape=(X_train.shape[1],)))model.add(tf.keras.layers.Dense(64, activation="relu"))model.add(tf.keras.layers.Dense(3, activation="softmax"))

模型编译

多分类问题一般是使用categorical_crossentropy作为损失函数。它是用来衡量网络输出的概率分布和标签的真实概率分布的距离。

In [47]:

model.compile(optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"] )

训练网络

In [48]:

len(X_train)

Out[48]:

120

In [49]:

history = model.fit(X_train, y_train, epochs=10, batch_size=15 )history

评估模型

In [50]:

model.evaluate(X_test, y_test)1/1 [==============================] - 0s 414ms/step - loss: 0.1799 - accuracy: 1.0000

Out[50]:

[0.17986173927783966, 1.0]

loss-acc曲线

In [51]:

for keys, _ in history.history.items(): print(keys)lossaccuracy

In [52]:

# 损失绘图import matplotlib.pyplot as plthistory_dict = history.history loss_values = history_dict["loss"]acc_values = history_dict["accuracy"]epochs = range(1,len(loss_values) + 1)# 训练plt.plot(epochs, # 循环轮数 loss_values, # loss取值 "r", # 红色 label="loss" )plt.plot(epochs, acc_values, "b", label="accuracy" )plt.title("Loss and Accuracy of Training")plt.xlabel("Epochs")plt.legend()plt.show()

上面的方案只是从最基本的流程来学习如何使用Keras框架来进行神经网络的建模,还有很多可以深入学习和挖掘的点:

1. 验证集数据的引入

2. 加入正则化技术,防止模型过拟合

3. 如何评估训练的轮次,使得模型在合适时机停止

4. 激活函数的选择等

整理不易,点赞三连↓

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:我用2年时间从财务到数据分析师!
下一篇:【学术相关】为什么很多国内学者的AI的论文复现不了?
相关文章

 发表评论

暂时没有评论,来抢沙发吧~