超赞!两张小抄,带你 “迅速” 掌握Pandas “数据清洗” 流程!

网友投稿 553 2022-11-11

超赞!两张小抄,带你 “迅速” 掌握Pandas “数据清洗” 流程!

超赞!两张小抄,带你 “迅速” 掌握Pandas “数据清洗” 流程!

本文简介

今天这篇文章,就当作是pandas教程的开篇文章吧!这是由Pandas官方发布的两张 “小抄”,内容不像matplotlib小抄那么多,但是内容确实极其精简,肯定可以迅速带你 “理清” Pandas学习思路。

项目地址如下:

you later

一饱眼福

咱们先一饱眼福吧,上传图片可能会失真,导致图片看不清楚。文末会给大家提供 “高清版” 供大家-。

虽然这两张图,不能详尽Pandas所有知识点,但是肯定是包含了Pandas的精髓,你掌握了这两张图,可以算是会用Pandas了。关于其它方法和技巧,大家练个手,基本也就学会了。

图片 “拆解” 讲解

肯定不是光给你两张图就行了呀,接下来,我们以此为基础,带着大家 “解剖” 这两张图吧。

① 创建DataFrame

DataFrame是pandas中最重要的数据结构,利用DataFrame()函数,我们可以创建各种不同结构的 “表格数据”,下面介绍了两种创建DataFrame的方法。

② 数据重塑

这里涉及到的知识点,就有点多了。什么是 “重塑” 呢?就是将原有的数据编程各种不同的结构。比如说:

melt:能够帮助我们实现列变行;pivot:数据透视能够实现行变列;concat:将不同的DataFrame按照行、列,进行拼接;当然,这里还涉及到排序、删除列、重命名等问题;

③ 数据选取

有时候,我们需要针对某个DataFrame的某个部分,做某些操作,这就需要我们学会 “选取” 数据。这里分为2个部分 “选取行数据” 和 “选取列数据”。

选取行数据的若干操作:

选取列数据的若干操作:

④ 汇总数据

下图为大家提供了一些常用的 “统计函数”,还有几个常用的其他函数 “value_couns()”、“nunique”、“describe”等,它们能够帮助我们进行 “不同条件” 下的汇总,帮助我们更快的了解数据。

⑤ 处理缺失值

这里主要为大家讲解两个函数:dropna() 和 fillna()。

⑥ 分组操作

不管是Excel、SQL,还是Python,分组统计这个操作,一直是必学的操作,这也是pandas学习过程中,极其重要的一个知识点。我们可以将原始数据,按照某个条件分组,接着对每个组使用下面的这些函数。

⑦ 合并数据集

pandas中merge()函数的作用,相当于excel中的vlookup()函数,相当于mysql中的左连接、右连接等,能够很方便的帮助我们,建立不同表之间的联系。

⑧ 窗口函数

做数据分析时,特别是在分析时间序列数据时,需要使用到这两个函数,滚动窗口rolling函数和扩展窗口expanding函数。

⑨ 绘图

绘图不是matplotlib的特权,其实对于一些简单的统计图形,直接使用pandas绘制,会更简单、更方便。

今天的文章大致就讲到这,看到这里,你应该大致搞明白了pandas可以做哪些东西,对于pandas里面的细节东西,请关注 “pandas系列教程” 哦。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:5000字长文 “详解” mysql安装,应该是 “全网” 最全的教程了
下一篇:numpy的使用说明(六):一招帮你彻底搞懂axis=0和axis=1
相关文章

 发表评论

暂时没有评论,来抢沙发吧~