洞察探索如何利用兼容微信生态的小程序容器,实现跨平台开发,助力金融和车联网行业的数字化转型。
498
2022-11-11
749. Contain Virus
A virus is spreading rapidly, and your task is to quarantine the infected area by installing walls.
The world is modeled as a 2-D array of cells, where 0 represents uninfected cells, and 1 represents cells contaminated with the virus. A wall (and only one wall) can be installed between any two 4-directionally adjacent cells, on the shared boundary.
Every night, the virus spreads to all neighboring cells in all four directions unless blocked by a wall. Resources are limited. Each day, you can install walls around only one region – the affected area (continuous block of infected cells) that threatens the most uninfected cells the following night. There will never be a tie.
Can you save the day? If so, what is the number of walls required? If not, and the world becomes fully infected, return the number of walls used.
Example 1:
Input: grid = [[0,1,0,0,0,0,0,1], [0,1,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0]]Output: 10Explanation:There are 2 contaminated regions.On the first day, add 5 walls to quarantine the viral region on the left. The board after the virus spreads is:[[0,1,0,0,0,0,1,1], [0,1,0,0,0,0,1,1], [0,0,0,0,0,0,1,1], [0,0,0,0,0,0,0,1]]On the second day, add 5
Example 2:
Input: grid = [[1,1,1], [1,0,1], [1,1,1]]Output: 4Explanation: Even though there is only one cell saved, there are 4
Example 3:
Input: grid = [[1,1,1,0,0,0,0,0,0], [1,0,1,0,1,1,1,1,1], [1,1,1,0,0,0,0,0,0]]Output: 13
Note: The number of rows and columns of grid will each be in the range [1, 50]. Each grid[i][j] will be either 0 or 1. Throughout the described process, there is always a contiguous viral region that will infect strictly more uncontaminated squares in the next round.
class Solution { Set
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~