小程序开发设计在提升企业数字化转型效率中的关键作用
696
2022-11-11
526. Beautiful Arrangement
Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 <= i <= N) in this array:
The number at the ith position is divisible by i. i is divisible by the number at the ith position. Now given N, how many beautiful arrangements can you construct?
Example 1:
Input: 2Output: 2Explanation: The first beautiful arrangement is [1, 2]:Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).The second beautiful arrangement is [2, 1]:Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.
Note: N is a positive integer and will not exceed 15.
思路: 从第一位到第N位,我们都要找到对应的没有放置过的数字来放,每一位都会有很多个数字可以放,而放了之后以后就不能放了,这样一直放到最后一位,如果都能放到数字,那就是一种漂亮的安排,总结果就要加一。 可以通过递归来实现,每一次递归我们都判断当前位置有哪些没放过的数字可以放,对于数字有没有放过我们需要一个数字来记录。对于每个放在这一位的数字,都是一种可能性,我们要继续往后递归看能不能全部放完才能知道要不要算作一种。如果所有都放完了那就算作一种了,总结过可以加一。 要注意这里的位置并不是从0开始算的,而是1。
class Solution public int countArrangement(int N) { int[] num = new int[N]; int res = findWay(num, 1); return res; } public int findWay(int[] num, int index) { if (index == num.length + 1) return 1; int total = 0; for (int i = 0; i < num.length; i++) { if (num[i] != 1) { if ((i + 1) % index == 0 || index % (i + 1) == 0) { int[] newNum = num.clone(); newNum[i] = 1; total += findWay(newNum, index + 1); } } } return
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~