Codeforces 933 C. A Colourful Prospect (平面图,欧拉公式)

网友投稿 917 2022-11-09

Codeforces 933 C. A Colourful Prospect (平面图,欧拉公式)

Codeforces 933 C. A Colourful Prospect (平面图,欧拉公式)

Description

Firecrackers scare Nian the monster, but they’re wayyyyy too noisy! Maybe fireworks make a nice complement.Little Tommy is watching a firework show. As circular shapes spread across the sky, a splendid view unfolds on the night of Lunar New Year’s eve.A wonder strikes Tommy. How many regions are formed by the circles on the sky? We consider the sky as a flat plane. A region is a connected part of the plane with positive area, whose bound consists of parts of bounds of the circles and is a curve or several curves without self-intersections, and that does not contain any curve other than its boundaries. Note that exactly one of the regions extends infinitely.

Input

The first line of input contains one integer n (1 ≤ n ≤ 3), denoting the number of circles.The following n lines each contains three space-separated integers x, y and r ( - 10 ≤ x, y ≤ 10, 1 ≤ r ≤ 10), describing a circle whose center is (x, y) and the radius is r. No two circles have the same x, y and r at the same time.

Output

Print a single integer — the number of regions on the plane.

Examples input

30 0 12 0 14 0 1

Examples output

4

题意

给定平面内 n 个圆的信息,求这些圆把平面分成了几个区域。

思路

久违的模板题佯~ 好开心~ 然而模板放在学校了哭唧唧 〒▽〒

求圆拆分平面有多少个区域怎么能离得开平面图的欧拉公式呢?

一般平面图欧拉公式:f=e−v+c+1 f = e − v + c + 1

其中 e e 代表边的数量,vv 代表点的数量,c c 代表连通块的数量,ff

我们把圆弧看作边,交点看作顶点,于是很容易便可以算出 e,v,c e , v , c

对于 e e

对于 vv

对于 c c ,我们已经有了无向图的边,那连通块的数量可以直接 dfs/bfs 或者并查集算出来啦~

然后套用公式就是结果了,注意精度问题。

AC 代码

#include#define IO ios::sync_with_stdio(false);\ cin.tie(0);\ cout.tie(0);using namespace std;typedef __int64 LL;typedef long double Ldb;const int maxn = 10;const Ldb eps = 1e-12;int n;struct Point{ Ldb x,y; Point() {} Point(Ldb _x,Ldb _y):x(_x),y(_y) {} Point operator + (const Point &t)const { return Point(x+t.x,y+t.y); } Point operator - (const Point &t)const { return Point(x-t.x,y-t.y); } Point operator * (const Ldb &t)const { return Point(x*t,y*t); } Point operator / (const Ldb &t)const { return Point(x/t,y/t); } bool operator < (const Point &t)const { return fabs(x-t.x) < eps ? y operator & (const Circle &c1,const Circle &c2) { Ldb d=(c1.o-c2.o).len(); if(d>c1.r+c2.r+eps || d(); Ldb dt=(c1.r*c1.r-c2.r*c2.r)/d,d1=(d+dt)/2; Point dir=(c2.o-c1.o)/d,pcrs=c1.o+dir*d1; dt=sqrt(max(0.0L,c1.r*c1.r-d1*d1)),dir=dir.rot90(); return vector {pcrs+dir*dt,pcrs-dir*dt}; }} p[maxn];bool vis[maxn];int fa[maxn],rk[maxn];void init(){ for(int i=1; irk[y]) fa[y] = x; else { fa[x] = y; if(rk[x]==rk[y]) rk[y]++; }}int main(){ IO; init(); cin>>n; for(int i=1; i<=n; i++) cin>>p[i].o.x>>p[i].o.y>>p[i].r; int e = 0,v = 0; vector all; for(int i=1; i<=n; i++) { vector tmp1; for(int j=1; j<=n; j++) { if(i==j) continue; vector tmp2 = p[i] & p[j]; if(tmp2.size()) union_set(i,j); tmp1.insert(tmp1.end(),tmp2.begin(),tmp2.end()); all.insert(all.end(),tmp2.begin(),tmp2.end()); } sort(tmp1.begin(),tmp1.end()); e += unique(tmp1.begin(),tmp1.end()) - tmp1.begin(); } sort(all.begin(),all.end()); v = unique(all.begin(),all.end()) - all.begin(); set c; for(int i=1; i<=n; i++) c.insert(find_set(i)); cout<

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:CCF 201712-4 行车路线 (spfa)
下一篇:Spring Boot中自动执行sql脚本的方法实例
相关文章

 发表评论

暂时没有评论,来抢沙发吧~