【OFDM通信】基于matlab深度学习OFDM系统信号检测【含Matlab源码 2023期】

网友投稿 1158 2022-11-08

【OFDM通信】基于matlab深度学习OFDM系统信号检测【含Matlab源码 2023期】

【OFDM通信】基于matlab深度学习OFDM系统信号检测【含Matlab源码 2023期】

一、深度学习OFDM系统信号检测简介

1 OFDM系统模型 OFDM系统是一种常用的多载波调制方式, 因为其具有能够在带宽较窄的情况下传输大量数据、能够对抗频率选择性衰落、传输速率高、实现简单、信道利用率高、抗窄带干扰能力强等优点而受到广泛使用。本节主要介绍了OFDM系统实现的基本原理以及系统模型。

1.1OFDM系统基本原理 因为频谱资源十分珍贵,如果一个信道仅仅只传输一路信号,那无疑是对频谱资源的浪费, 为了能够充分利用信道带宽, 频分复用是一种很好的方法。OFDM技术是频分复用方法的一种,其基本原理如下:将串行的高速数据流转换为低速的并行数据流,然后将数据调制到相互正交的子载波上4Q。OFDM系统可以通过DFT和ID FT的方法产生相互正交的子载波,然后利用子载波之间的正交性,将原始信号从子载波中分离开来,通过这种方法可以实现OFDM无线通信系统中信号的发送与接收。

1.2OFDM系统模型

OFDM符号是由若干个子载波组成, 且每个子载波都要受到相移键控I+!!(phase-shift keying, PSK) 或者正交幅度调制+2(Quadrature Amplitude Modulation, QAM) 的调制。在发送端, 设N为子载波的数量, T为OFDM符号的宽度, d(i=0, 1…N-1)为分配给每个子载波的数据符号, f:为第0个子载波的载波频率, rect() =1, |sT/2,则从t=1, 开始的OFDM符号表达式为:

但是使用离散傅里叶变换也有其缺点, 因为随着OFDM无线通信系统的子载波数目的增多,离散傅里叶变换的运算复杂度也会呈指数倍增长,因此在实际工程中常常使用FFT/IF FT代替离散傅里叶变换, 这样可以很大程度上减少运算的时间和占用的硬件资源,同时也可以降低数据传输时延。

由图2.2所示, 信源发出比特流信号, 比特流信号需要经过PSK或者QAM调制,然后经过串并转换的同时加入导频信号后被分成M路数据,M路数据经过快速傅里叶逆变换后转换为N个时域离散信号, 插入循环前缀(Cyclic Prefix, CP) 是为了避免ICI对整个系统的影响,其具体过程是取N个时域信号的后L,位数据放在该符号的前面形成循环结构, 这样就能保证即使是有时延的OFDM符号在经过FFT后依然是整数倍周期。最后将插入CP之后的OFDM符号经过并串转换之后就可以通过发射机发送出去。接收机接收到信号之后先把数据进行串并转换,然后按照按照插入CP的方式移除CP,CP的长度应该大于信道的时延, 只有这样才能消除符号间干扰, 然后对信号进行FFT变换,将信号从时域转换到频域,接收信号可以表示为

Y=XH+Z(2-8)

式中:Y为接收信号的频域形式,x为发送信号的频域形式,H为信道冲激响应,z为噪声。

二、部分源代码

%% Clear workspaceclear variables; close all;%% Load common parameters and the trained NNload(‘SimParametersPilot64.mat’); load(‘TrainedNetPilot64.mat’);%% Other simulation parametersNumPilot = length(FixedPilot); PilotSpacing = NumSC/NumPilot; NumOFDMsym = NumPilotSym+NumDataSym; NumClass = length(Label); NumPath = length(h);% Load pre-calculated channel autocorrelation matrix for MMSE estimation % This autocorrelation matrix is calculated in advance using the 3GPP % channel model, which can be replaced accordingly. load(‘RHH.mat’);%% SNR rangeEs_N0_dB = 0:2:20; % Es/N0 in dB Es_N0 = 10.^(Es_N0_dB./10); % linear Es/N0 N0 = 1./Es_N0; NoiseVar = N0./2;%% Testing data sizeNumPacket = 10000; % Number of packets simulated per iteration%% Simulation% Same pilot sequences used in training and testing stages FixedPilotAll = repmat(FixedPilot,1,1,NumPacket);% Number of Monte-Carlo iterations NumIter = 1;% Initialize error rate vectors SER_DL = zeros(length(NoiseVar),NumIter); SER_LS = zeros(length(NoiseVar),NumIter); SER_MMSE = zeros(length(NoiseVar),NumIter);for i = 1:NumIter

for snr = 1:length(NoiseVar) %% 1. Testing data generation noiseVar = NoiseVar(snr); % OFDM pilot symbol (can be interleaved with random data symbols) PilotSym = 1/sqrt(2)*complex(sign(rand(NumPilotSym,NumSC,NumPacket)-0.5),sign(rand(NumPilotSym,NumSC,NumPacket)-0.5)); PilotSym(1:PilotSpacing:end) = FixedPilotAll; % OFDM data symbol DataSym = 1/sqrt(2)*complex(sign(rand(NumDataSym,NumSC,NumPacket)-0.5),sign(rand(NumDataSym,NumSC,NumPacket)-0.5)); % Transmitted OFDM frame TransmittedPacket = [PilotSym;DataSym]; % Received OFDM frame ReceivedPacket = genTransmissionReceptionOFDM(TransmittedPacket,LengthCP,h,noiseVar); % Collect the data labels for the selected subcarrier DataLabel = zeros(size(DataSym(:,idxSC,:))); for c = 1:NumClass DataLabel(logical(DataSym(:,idxSC,:) == 1/sqrt(2)*Mod_Constellation(c))) = Label(c); end DataLabel = squeeze(DataLabel); % Testing data collection XTest = cell(NumPacket,1); YTest = zeros(NumPacket,1); for c = 1:NumClass [feature,label,idx] = getFeatureAndLabel(real(ReceivedPacket),imag(ReceivedPacket),DataLabel,Label(c)); featureVec = mat2cell(feature,size(feature,1),ones(1,size(feature,2))); XTest(idx) = featureVec; YTest(idx) = label; end YTest = categorical(YTest); %% 2. DL detection YPred = classify(Net,XTest,'MiniBatchSize',MiniBatchSize); SER_DL(snr,i) = 1-sum(YPred == YTest)/NumPacket; %% 3. LS & MMSE detection % Channel estimation wrapper = @(x,y) performChanEstimation(x,y,RHH,noiseVar,NumPilot,NumSC,NumPath,idxSC); ReceivedPilot = mat2cell(ReceivedPacket(1,:,:),1,NumSC,ones(1,NumPacket)); PilotSeq = mat2cell(FixedPilotAll,1,NumPilot,ones(1,NumPacket)); [EstChanLS,EstChanMMSE] = cellfun(wrapper,ReceivedPilot,PilotSeq,'UniformOutput',false); EstChanLS = cell2mat(squeeze(EstChanLS)); EstChanMMSE = cell2mat(squeeze(EstChanMMSE)); % Symbol detection SER_LS(snr,i) = getSymbolDetection(ReceivedPacket(2,idxSC,:),EstChanLS,Mod_Constellation,Label,DataLabel); SER_MMSE(snr,i) = getSymbolDetection(ReceivedPacket(2,idxSC,:),EstChanMMSE,Mod_Constellation,Label,DataLabel); end

end function ReceivedPacket = genTransmissionReceptionOFDM(TransmittedFrame,LengthCP,h,NoiseVar) % This function is to model the transmission and reception process in OFDM systems.% Extract parameters [NumSym,NumSC,NumPacket] = size(TransmittedFrame);%% TransmitterPhaseShift = exp(-1j*rand(1,NumPacket)2pi);for p = 1:NumPacket

% 1. IFFTx1 = ifft(TransmittedFrame(:,:,p),NumSC,2); % 2. Inserting CPx1_CP = [x1(:,NumSC-LengthCP+1:end) x1]; % 3. Parallel to serial transformationx2 = x1_CP.';x = x2(:);% 4. Channel filteringy_conv = conv(h*PhaseShift(p),x);y(:,p) = y_conv(1:length(x));

end%% Adding noiseSeqLength = size(y,1);% Calculate random noise in time domain NoiseF = sqrt(NoiseVar)/sqrt(2).(randn(NumPacket,NumSC)+1jrandn(NumPacket,NumSC)); % Frequency-domain noise NoiseT = sqrt(SeqLength)*sqrt(SeqLength/NumSC)*ifft(NoiseF,SeqLength,2); % Time-domain noise% Adding noise y = y+NoiseT.';%% ReceiverReceivedPacket = zeros(NumPacket,NumSym,NumSC);for p = 1:NumPacket

% 1. Serial to parallem transformationy1 = reshape(y(:,p),NumSC+LengthCP,NumSym).'; % 2. Removing CPy2 = y1(:,LengthCP+1:LengthCP+NumSC);% 3. FFT, # x NymSym x 64ReceivedPacket(p,:,:) = fft(y2,NumSC,2); % NumSym x 64

end

ReceivedPacket = permute(ReceivedPacket,[2,3,1]);

三、运行结果

四、matlab版本及参考文献

1 matlab版本 2014a

2 参考文献 [1] 高俊伟.基于深度学习的OFDM信号检测算法研究[D].哈尔滨工程大学

3 备注 简介此部分摘自互联网,仅供参考,若侵权,联系删除

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:基于@Table注解无法使用及报红的解决
下一篇:智能恒等于推荐系统
相关文章

 发表评论

暂时没有评论,来抢沙发吧~