企业在数字化转型中如何利用常用前端框架提高开发效率并确保安全合规?
1277
2022-11-03
springboot线程池监控的简单实现
目录背景代码代码类结构线程池扩展类线程工具类线程bean类线程池实现类线程池监控接口类运行结果
背景
在我们实际项目开发中,常常会为不同的优先级的任务设置相对应的线程池。一般我们只关注相关池的相关参数如核心线程数据,最大线程数据等等参数,容易忽略了对线程池中实际运行情况的监控。综上所述:线程池如果相当于黑盒一样在运行的话,对系统的不利的。本文提供了一种简单获取线程池运行状态的方式,可以将详情打印到日志或者对接到Prometheus上进行展示。详细有不少博主给出了动态修改线程的方式,但是由于生产环境是禁止,因此本文只提供了监控的功能。本代码应用项目架构为springboot。
代码
代码类结构
ThreadPoolMonitor:线程池扩展类ThreadPoolUtil:线程池工具类ThreadPoolDetailInfo:bean类ExecutorThreadPoolManager:线程池实现类ThreadPoolController:线程池测试方法
线程池扩展类
从类主要重写了ThreadPoolExecutor类中的shutdown/shutdownNow/beforeExecute/afterExecute,用于对每个任务进行执行前后的拦截,计算出每个任务的运行时间。
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Date;
import java.util.List;
import java.util.concurrent.*;
/**
* @ClassName ThreadPoolMonitor
* @authors kantlin
* @Date 2021/12/16 17:45
**/
public class ThreadPoolMonitor extends ThreadPoolExecutor {
private static final Logger LOGGER = LoggerFactory.getLogger(ThreadPoolMonitor.class);
private final ConcurrentHashMap
private final String poolName;
private long totalDiff;
public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory);
this.startTimes = new ConcurrentHashMap();
this.poolName = poolName;
}
@Override
public void shutdown() {
LOGGER.info("{} Going to shutdown. Executed tasks: {}, Running tasks: {}, Pending tasks: {}", new Object[]{this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size()});
super.shutdown();
}
@Override
public List
LOGGER.info("{} Going to immediately shutdown. Executed tasks: {}, Running tasks: {}, Pending tasks: {}", new Object[]{this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size()});
return super.shutdownNow();
}
@Override
protected void beforeExecute(Thread t, Runnable r) {
this.startTimes.put(String.valueOf(r.hashCode()), new Date());
}
@Override
protected void afterExecute(Runnable r, Throwable t) {
Date startDate = this.startTimes.remove(String.valueOf(r.hashCode()));
Date finishDate = new Date();
long diff = finishDate.getTime() - startDate.getTime();
this.totalDiff += diff;
}
public long getTotalDiff() {
return this.totalDiff;
}
}
线程工具类
import org.springframework.stereotype.Component;
import java.util.HashMap;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.TimeUnit;
/**
* @ClassName ThreadPoolUtil
* @authors kantlin
* @Date 2021/12/16 17:45
**/
@Component
public class ThreadPoolUtil {
private final HashMap
public ThreadPoolUtil() {
}
public ThreadPoolMonitor creatThreadPool(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue
ThreadPoolMonitor threadPoolExecutor = new ThreadPoolMonitor(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,threadFactory, poolName);
this.threadPoolExecutorHashMap.put(poolName, threadPoolExecutor);
return threadPoolExecutor;
}
public HashMap
return this.threadPoolExecutorHashMap;
}
线程bean类
import lombok.Data;
@Data
public class ThreadPoolDetailInfo {
//线程池名字
private String threadPoolName;
//当前线程池大小
private Integer poolSize;
//线程池核心线程数量
private Integer corePoolSize;
//线程池生命周期中最大线程数量
private Integer largestPoolSize;
//线程池中允许的最大线程数
private Integer maximumPoolSize;
//线程池完成的任务数目
private long completedTaskCount;
//线程池中当前活跃个数
private Integer active;
//线程池完成的任务个数
private long task;
//线程最大空闲时间
private long keepAliveTime;
//当前活跃线程的占比
private int activePercent;
//任务队列容量(阻塞队列)
private Integer queueCapacity;
//当前队列中任务的数量
private Integer queueSize;
//线程池中任务平均执行时长
private long avgExecuteTime;
public ThreadPoolDetailInfo(String threadPoolName, Integer poolSize, Integer corePoolSize, Integer largestPoolSize, Integer maximumPoolSize, long completedTaskCount, Integer active, long task, long keepAliveTime, int activePercent, Integer queueCapacity, Integer queueSize, long avgExecuteTime) {
this.threadPoolName = threadPoolName;
this.poolSize = poolSize;
this.corePoolSize = corePoolSize;
this.largestPoolSize = largestPoolSize;
this.maximumPoolSize = maximumPoolSize;
this.completedTaskCount = completedTaskCount;
this.active = active;
this.task = task;
this.keepAliveTime = keepAliveTime;
this.activePercent = activePercent;
this.queueCapacity = queueCapacity;
this.queueSize = queueSize;
this.avgExecuteTime = avgExecuteTime;
}
}
线程池实现类
在我的项目中,将线程池依次划分为high、normal、low、single四种线程池类型。不同优先级的任务将会被submit到不同的线程池中执行。在业务中有判断线程池中queue的长度来决定是否投递任务,由于没有相应的拒绝策略,所以队列不设置长度。
import com.google.common.util.concurrent.ThreadFactoryBuilder;
import com.*.newThread.ThreadPoolUtil;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
import javax.annotation.PostConstruct;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
@Component
public class ExecutorThreadPoolMMRTxnqHNAyanager {
@Autowired
private ThreadPoolUtil threadPoolUtil;
@Value("${thread_pool_normal_level_thread_max_num}")
private Integer normalLevelThreadPoolThreadMaxNum;
@Value("${thread_pool_normal_level_core_thread_num}")
private Integer normalLevelThreadPoolCoreThreadNum;
@Value("${thread_pool_low_level_thread_max_num}")
private Integer lowLevelThreadPoolThreadMaxNum;
@Value("${thread_pool_low_level_core_thread_num}")
private Integer lowLevelThreadPoolCoreThreadNum;
private ThreadPoolExecutor normalThreadPoolExecutor;
private ThreadPoolExecutor highPriorityExecutor;
private ThreadPoolExecutor lowPriorityExecutor;
private ThreadPoolExecutor singleThreadPoolExecutor;
@PostConstruct
public void initExecutor() {
ThreadFactory normalThreadFactory = new ThreadFactoryBuilder().setNameFormat("normal_task_thread_%d").build();
normalThreadPoolExecutor = threadPoolUtil.creatThreadPool(normalLevelThreadPoolCoreThreadNum, normalLevelThreadPoolThreadMaxNum, 0L,
TimeUnit.MILLISECONDS, new LinkedBlockingQueue
ThreadFactory highPriorityThreadFactory = new ThreadFactoryBuilder().setNameFormat("high_priority_level_task_thread_%d").build();
highPriorityExecutor = threadPoolUtil.creatThreadPool(normalLevelThreadPoolCoreThreadNum, normalLevelThreadPoolThreadMaxNum, 0L,
TimeUnit.MILLISECONDS, new LinkedBlockingQueue
ThreadFactory lowPriorityThreadFactory = new ThreadFactoryBuilder().setNameFormat("low_priority_level_task_thread_%d").build();
lowPriorityExecutor = threadPoolUtil.creatThreadPool(lowLevelThreadPoolCoreThreadNum, lowLevelThreadPoolThreadMaxNum, 0L,
TimeUnit.MILLISECONDS, new LinkedBlockingQueue
ThreadFactory singleFactory = new ThreadFactoryBuilder().setNameFormat("single_task_thread_%d").build();
singleThreadPoolExecutor =threadPoolUtil.creatThreadPool(1, 1,
0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue
}
/**
* @author kantlin
* @date 2021/9/9
* @describe 定义三种线程池, 一般采集类的用低优, 正常业务的用中优, 用户手动请求API的用高优线程池
**/
public ThreadPoolExecutor getNormalThreadPoolExecutor() {
return normalThreadPoolExecutor;
}
public ThreadPoolExecutor getHighPriorityExecutor() {
return highPriorityExecutor;
}
public ThreadPoolExecutor getLowPriorityExecutor() {
return lowPriorityExecutor;
}
public ThreadPoolExecutor getSingleThreadPoolExecutor() {
return singleThreadPoolExecutor;
}
}
线程池监控接口类
import com.alibaba.fastjson.JSONObject;
import com.*.newThread.ThreadPoolDetailInfo;
import com.*.newThread.ThreadPoolMonitor;
import com.*.newThread.ThreadPoolUtil;
import com.*.thread.ExecutorThreadPoolManager;
import io.swagger.annotations.Api;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.web.bind.annotation.*;
import java.math.BigDecimal;
import java.text.NumberFormat;
import java.util.*;
import java.util.concurrent.TimeUnit;
/**
* @ClassName ThreadPoolController
* @authors kantlin
* @Date 2021/12/17 14:53
**/
@Api(description = "线程池监控接口")
@RestController
@RequestMapping(value = "api/threadpool")
public class ThreadPoolController {
private static final Logger LOGGER = LoggerFactory.getLogger(ThreadPoolController.class);
@Autowired
private ExecutorThreadPoolManager threadPool;
@Autowired
private ThreadPoolUtil threadPoolUtil;
@GetMapping(value = "/getThreadPools")
private List
List
if (!this.threadPoolUtil.getThreadPoolExecutorHashMap().isEmpty()) {
Iterator var2 = this.threadPoolUtil.getThreadPoolExecutorHashMap().entrySet().iterator();
while (var2.hasNext()) {
Map.Entry
threadPools.add(entry.getKey());
}
}
return threadPools;
}
@GetMapping(value = "/getThreadPoolListInfo")
@Scheduled(cron = "${thread.poll.status.cron}")
private List
List
if (!this.threadPoolUtil.getThreadPoolExecutorHashMap().isEmpty()) {
Iterator var2 = this.threadPoolUtil.getThreadPoolExecutorHashMap().entrySet().iterator();
while (var2.hasNext()) {
Map.Entry
ThreadPoolDetailInfo threadPoolDetailInfo = this.threadPoolInfo(entry.getValue(), (String) entry.getKey());
detailInfoList.add(threadPoolDetailInfo);
}
}
LOGGER.info("Execute details of cuurent thread poll:{}", JSONObject.toJSONString(detailInfoList));
return detailInfoList;
}
private ThreadPoolDetailInfo threadPoolInfo(ThreadPoolMonitor threadPool, String threadPoolName) {
BigDecimal activeCount = new BigDecimal(threadPool.getActiveCount());
BigDecimal maximumPoolSize = new BigDecimal(threadPool.getMaximumPoolSize());
BigDecimal result = activeCount.divide(maximumPoolSize, 2, 4);
NumberFormat numberFormat = NumberFormat.getPercentInstance();
numberFormat.setMaximumFractionDigits(2);
int queueCapacity = 0;
return new ThreadPoolDetailInfo(threadPoolName, threadPool.getPoolSize(), threadPool.getCorePoolSize(), threadPool.getLargestPoolSize(), threadPool.getMaximumPoolSize(), threadPool.getCompletedTaskCount(), threadPool.getActiveCount(), threadPool.getTaskCount(), threadPool.getKeepAliveTime(TimeUnit.MILLISECONDS), new Double(result.doubleValue() * 100).intValue(), queueCapacity, threadPool.getQueue().size(), threadPool.getTaskCount() == 0L ? 0L : threadPool.getTotalDiff() / threadPool.getTaskCount());
}
}
运行结果
上面controller中的方法除了可以通过接口进行暴露外,还设置了定时任务定期的打印到日志中。方便对系统状态进行排查。
[
{
"active": 0,
"activePercent": 0,
"avgExecuteTime": 0,
"completedTaskCount": 0,
"corePoolSize": 20,
"keepAliveTime": 0,
"largestPoolSize": 0,
"maximumPoolSize": 20,
"poolSize": 0,
"queueCapacity": 0,
"queueSize": 0,
"task": 0,
"threadPoolName": "high_level_thread_pool"
},
{
"active": 0,
"activePercent": 0,
"avgExecuteTime": 0,
"completedTaskCount": 0,
"corePoolSize": 33,
"keepAliveTime": 0,
"largestPoolSize": 0,
"maximumPoolSize": 33,
"poolSize": 0,
"queueCapacity": 0,
"queueSize": 0,
"task": 0,
"threadPoolName": "low_level_thread_pool"
},
{
"active": 0,
"activePercent": 0,
"avgExecuteTime": 371,
"completedTaskCount": 14,
"corePoolSize": 20,
http://"keepAliveTime": 0,
"largestPoolSize": 14,
"maximumPoolSize": 20,
"poolSize": 14,
"queueCapacity": 0,
"queueSize": 0,
"task": 14,
"threadPoolName": "normal_level_thread_pool"
},
{
"active": 0,
"activePercent": 0,
"avgExecuteTime": 0,
"completedTaskCount": 0,
"corePoolSize": 1,
"keepAliveTime": 0,
"largestPoolSize": 0,
"maximumPoolSize": 1,
"poolSize": 0,
"queueCapacity": 0,
"queueSize": 0,
"task": 0,
"threadPoolName": "single_level_thread_pool"
}
]
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~