TensorSpace.js 是一套用于构建神经网络3D可视化应用的框架

网友投稿 792 2022-11-03

TensorSpace.js 是一套用于构建神经网络3D可视化应用的框架

TensorSpace.js 是一套用于构建神经网络3D可视化应用的框架

TensorSpace.js

Present Tensor in Space

English | 中文

TensorSpace is a neural network 3D visualization framework built using TensorFlow.js, Three.js and Tween.js. TensorSpace provides Keras-like APIs to build deep learning layers, load pre-trained models, and generate a 3D visualization in the browser. From TensorSpace, it is intuitive to learn what the model structure is, how the model is trained and how the model predicts the results based on the intermediate information. After preprocessing the model, TensorSpace supports to visualize pre-trained model from TensorFlow, Keras and TensorFlow.js.

Fig. 1 - Interactive LeNet created by TensorSpace

Table of Content

MotivationGetting StartedAwesome TensorSpaceExampleDocumentationChangelogContributorsContactLicenseNext Episode

Motivation

TensorSpace is a neural network 3D visualization framework designed for not only showing the basic model structure, but also presenting the processes of internal feature abstractions, intermediate data manipulations and final inference generations.

By applying TensorSpace API, it is more intuitive to visualize and understand any pre-trained models built by TensorFlow, Keras, TensorFlow.js, etc. TensorSpace introduces a way for front end developers to be involved in the deep learning ecosystem. As an open source library, TensorSpace team welcomes any further development on visualization applications.

Interactive -- Use Layer API to build interactive model in browsers.Intuitive -- Visualize the information from intermediate inferences.Integrative -- Support pre-trained models from TensorFlow, Keras, TensorFlow.js.

Getting Started

Fig. 2 - TensorSpace Workflow

1. Install TensorSpace

Install in the Basic Case

Step 1: Download Dependencies

Download dependencies build files TensorFlow.js (tf.min.js), Three.js (three.min.js), Tween.js (tween.min.js), TrackballControls (TrackballControls.js).

Step 2: Download TensorSpace

Download TensorSpace build file tensorspace.min.js from Github, NPM, TensorSpace official website or CDN:

Step 3: Include Build Files

Include all build files in web page.

Install in the Progressive Framework

Step 1: Install TensorSpaceOption 1: NPMnpm install tensorspaceOption 2: Yarnyarn add tensorspace Step 2: Use TensorSpace

import * as TSP from 'tensorspace';

Checkout this Angular example for more information.

2. Preprocess the Pre-trained Model

Before applying TensorSpace to visualize the pre-trained model, there is an important pipeline - TensorSpace model preprocessing ( Checkout this article for more information about TensorSpace preprocessing ). We can use TensorSpace Converter to quickly complete the TensorSpace Preprocessing.

For example, if we have a tf.keras model in hand, we can use the following TensorSpace-Converter conversion script to convert a tf.keras model to the TensorSpace compatible format:

$ tensorspacejs_converter \ --input_model_from="tensorflow" \ --input_model_format="tf_keras" \ --output_layer_names="padding_1,conv_1,maxpool_1,conv_2,maxpool_2,dense_1,dense_2,softmax" \ ./PATH/TO/MODEL/tf_keras_model.h5 \ ./PATH/TO/SAVE/DIR

Note:

Make sure to install tensorspacejs pip package, and setup a TensorSpace-Converter runtime environment before using TensorSpace-Converter to preprocess the pre-trained model.Based on different training libraries, we provide different preprocessing tutorials: TensorFlow Tutorial, Keras Tutorial, TensorFlow.js Tutorial.Checkout TensorSpace-Converter Repo for more information about TensorSpace-Converter.

Fig. 3 - TensorSpace-Converter Usage

3. Using TensorSpace to Visualize the Model

If TensorSpace is installed successfully and the pre-trained deep learning model is preprocessed, let's create an interactive 3D TensorSpace model.

For convenience, we will use the the resources from this repository's HelloWorld directory, which includes preprocessed TensorSpace compatible LeNet model and sample input data ("5") as an example to illustrate this step. All source code can be found in helloworld.html.

First, we need to new a TensorSpace model instance:

let container = document.getElementById( "container" );let model = new TSP.models.Sequential( container );

Next, based on the LeNet structure: Input + Padding2D + 2 X (Conv2D & Maxpooling) + 3 X (Dense), build the Topology of the TensorSpace model:

model.add( new TSP.layers.GreyscaleInput() );model.add( new TSP.layers.Padding2d() );model.add( new TSP.layers.Conv2d() );model.add( new TSP.layers.Pooling2d() );model.add( new TSP.layers.Conv2d() );model.add( new TSP.layers.Pooling2d() );model.add( new TSP.layers.Dense() );model.add( new TSP.layers.Dense() );model.add( new TSP.layers.Output1d({ outputs: ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]}) );

Last, we should load our preprocessed TensorSpace compatible model and use init() method to create the TensorSpace model:

model.load({ type: "tensorflow", url: './PATH/TO/MODEL/model.json'});model.init(function(){ console.log("Hello World from TensorSpace!");});

We can get the following Fig. 3 model in the browser if everything looks good.

Fig. 4 - LeNet model without any input data

We provide a extracted file which is a handwritten "5" as the input of our model: (online demo)

model.init(function() { model.predict( image_5 );});

We put the predict( image_5 ) method in the callback function of init() to ensure the prediction is after the initialization complete.

Fig. 5 - LeNet model with input data "5"

Example

LeNet [ TensorFlow.js model ]

➡ Live Demo

Fig. 6 - Interactive LeNet created by TensorSpace

AlexNet [ TensorFlow model ]

➡ Live Demo

Fig. 7 - Interactive AlexNet created by TensorSpace

Yolov2-tiny [ TensorFlow model ]

➡ Live Demo

Fig. 8 - Interactive Yolov2-tiny created by TensorSpace

ResNet-50 [ Keras model ]

➡ Live Demo

Fig. 9 - Interactive ResNet-50 created by TensorSpace

Vgg16 [ Keras model ]

➡ Live Demo

Fig. 10 - Interactive Vgg16 created by TensorSpace

ACGAN [ Keras model ]

➡ Live Demo

Fig. 11 - Interactive ACGAN created by TensorSpace

MobileNetv1 [ Keras model ]

➡ Live Demo

Fig. 12 - Interactive MobileNetv1 created by TensorSpace

Inceptionv3 [ Keras model ]

➡ Live Demo

Fig. 13 - Interactive Inceptionv3 created by TensorSpace

LeNet Training Visualization [ TensorFlow.js dynamic model ]

Visualize the LeNet Training Process with TensorSpace.js and TensorFlow.js.

➡ Live Demo

Fig. 14 - LeNet Training 3D Visualization

View models locally

As some models above are extremely large, view them locally may be a good choice.

Step 1: clone TensorSpace Repo

git clone https://github.com/tensorspace-team/tensorspace.git

Step 2:

Open "html" file in examples folder in local web server.

Documentation

For a quick start, checkout Getting StartTo learn more about the Basic ConceptsTo process a deep learning model, checkout Model Preprocessing, TensorSpace-ConverterTo learn core components: Models, Layers and Merge FunctionCheckout the official website TensorSpace.org for more about TensorSpace.

Contributors

Thanks goes to these wonderful people (emoji key):

Contact

If you have any issue or doubt, feel free to contact us by:

Email: tensorspaceteam@gmail.comGitHub Issues: create issueSlack: #questionsGitter: #Lobby

License

Apache License 2.0

Next Episode

TensorSpace-VR

Present Neural Network in VR

Fig. 15 - TensorSpace VR Demo

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:disk.frame - 基于磁盘的高性能并行内存(RAM)外数据处理框架
下一篇:在SpringCloud gateway自定义全局过滤器中修改multipart/form-data类型请求体
相关文章

 发表评论

暂时没有评论,来抢沙发吧~