微前端架构如何改变企业的开发模式与效率提升
909
2022-11-02
一个完整的串行爬虫 抓取3万多个页面 ,程序跑完大概30分钟
guwen-spider
git clone https://github.com/yangfan0095/guwen-spider.git
npm install
npm run start
说明: 本来写这个项目这是一个用于学习和交流的用途, 但是从昨天晚上到今天早上上班这个时间段 ,在掘金上面大概有1200多人阅读,然后这个项目很多同学一拉下来直接跑一遍,对我们要爬取的这个对象网站来说就意味着大约2万 * N 的访问量。这个网站不是链家或者知乎这种大型互联网公司。从昨天晚上到现在,平时这个访问量一周只有不到10万的网站 ,访问量暴增到140万。 这其中绝大部分都是爬虫。所以我们的行为虽然本质上是纯粹的技术交流,但是影响了第三方的运营。因此现在我一些相关的配置参数全部屏蔽了。希望大家能够理解。如果真的需要这些数据用以研究而自己没有办法获取到,可以email联系我 。
写完这个项目 做了一个基于React开的前端网站用于页面浏览 和一个基于koa2.x开发的服务端, 整体技术栈相当于是 React + Redux + Koa2 ,前后端服务是分开部署的,各自独立可以更好的去除前后端服务的耦合性,比如同一套服务端代码,不仅可以给web端 还可以给 移动端 ,app 提供支持。目前整个一套还很简陋,但是可以满足基本的查询浏览功能。希望后期有时间可以把项目变得更加丰富。
本项对应前端 React + Redux + semantic-ui 地址 : guwen-react本项对应Node端 Koa2.2 + mongoose 地址 : guwen-node
项目体会
前言
˜ 之前研究数据,零零散散的写过一些数据抓取的爬虫,不过写的比较随意。有很多地方现在看起来并不是很合理 这段时间比较闲,本来是想给之前的项目做重构的。 后来 利用这个周末,索性重新写了一个项目,就是本项目 guwen-spider。目前这个爬虫还是比较简单的类型的, 直接抓取页面,然后在页面中提取数据,保存数据到数据库。 通过与之前写的对比,我觉得难点在于整个程序的健壮性,以及相应的容错机制。在昨天写代码的过程中其实也有反映, 真正的主体代码其实很快就写完了 ,花了大部分时间是在 做稳定性的调试, 以及寻求一种更合理的方式来处理数据与流程控制的关系。
背景
概述
项目技术细节
项目大量用到了 ES7 的async 函数, 更直观的反应程序了的流程。为了方便,在对数据遍历的过程中直接使用了著名的async这个库,所以不可避免的还是用到了回调promise ,因为数据的处理发生在回调函数中,不可避免的会遇到一些数据传递的问题,其实也可以直接用ES7的async await 写一个方法来实现相同的功能。这里其实最赞的一个地方是使用了 Class 的 static 方法封装对数据库的操作, static 顾名思义 静态方法 就跟 prototype 一样 ,不会占用额外空间。 项目主要用到了
1 ES7的 async await 协程做异步有关的逻辑处理。2 使用 npm的 async库 来做循环遍历,以及并发请求操作。3 使用 log4js 来做日志处理4 使用 cheerio 来处理dom的操作。5 使用 mongoose 来连接mongoDB 做数据的保存以及操作。
目录结构
├── bin // 入口│ ├── booklist.js // 抓取书籍逻辑│ ├── chapterlist.js // 抓取章节逻辑│ ├── content.js // 抓取内容逻辑│ └── index.js // 程序入口├── config // 配置文件├── dbhelper // 数据库操作方法目录├── logs // 项目日志目录├── model // mongoDB 集合操作实例├── node_modules ├── utils // 工具函数├── package.json
项目实现方案分析
项目是一个典型的多级抓取案例,目前只有三级,即 书籍列表, 书籍项对应的 章节列表,一个章节链接对应的内容。 抓取这样的结构可以采用两种方式, 一是 直接从外层到内层 内层抓取完以后再执行下一个外层的抓取, 还有一种就是先把外层抓取完成保存到数据库,然后根据外层抓取到所有内层章节的链接,再次保存,然后从数据库查询到对应的链接单元 对之进行内容抓取。这两种方案各有利弊,其实两种方式我都试过, 后者有一个好处,因为对三个层级是分开抓取的, 这样就能够更方便,尽可能多的保存到对应章节的相关数据。 可以试想一下 ,如果采用前者 按照正常的逻辑 对一级目录进行遍历抓取到对应的二级章节目录, 再对章节列表进行遍历 抓取内容,到第三级 内容单元抓取完成 需要保存时,如果需要很多的一级目录信息,就需要 这些分层的数据之间进行数据传递 ,想想其实应该是比较复杂的一件事情。所以分开保存数据 一定程度上避开了不必要的复杂的数据传递。
目前我们考虑到 其实我们要抓取到的古文书籍数量并不多,古文书籍大概只有180本囊括了各种经史。其和章节内容本身是一个很小的数据 ,即一个集合里面有180个文档记录。 这180本书所有章节抓取下来一共有一万六千个章节,对应需要访问一万六千个页面爬取到对应的内容。所以选择第二种应该是合理的。
项目实现
主程有三个方法 bookListInit ,chapterListInit,contentListInit, 分别是抓取书籍目录,章节列表,书籍内容的方法对外公开暴露的初始化方法。通过async 可以实现对这三个方法的运行流程进行控制,书籍目录抓取完成将数据保存到数据库,然后执行结果返回到主程序,如果运行成功 主程序则执行根据书籍列表对章节列表的抓取,同理对书籍内容进行抓取。
项目主入口
/** * 爬虫抓取主入口 */const start = async() => { let booklistRes = await bookListInit(); if (!booklistRes) { logger.warn('书籍列表抓取出错,程序终止...'); return; } logger.info('书籍列表抓取成功,现在进行书籍章节抓取...'); let chapterlistRes = await chapterListInit(); if (!chapterlistRes) { logger.warn('书籍章节列表抓取出错,程序终止...'); return; } logger.info('书籍章节列表抓取成功,现在进行书籍内容抓取...'); let contentListRes = await contentListInit(); if (!contentListRes) { logger.warn('书籍章节内容抓取出错,程序终止...'); return; } logger.info('书籍内容抓取成功');}// 开始入口if (typeof bookListInit === 'function' && typeof chapterListInit === 'function') { // 开始抓取 start();}
引入的 bookListInit ,chapterListInit,contentListInit, 三个方法
booklist.js
/** * 初始化方法 返回抓取结果 true 抓取成果 false 抓取失败 */const bookListInit = async() => { logger.info('抓取书籍列表开始...'); const pageUrlList = getPageUrlList(totalListPage, baseUrl); let res = await getBookList(pageUrlList); return res;}
chapterlist.js
/** * 初始化入口 */const chapterListInit = async() => { const list = await bookHelper.getBookList(bookListModel); if (!list) { logger.error('初始化查询书籍目录失败'); } logger.info('开始抓取书籍章节列表,书籍目录共:' + list.length + '条'); let res = await asyncGetChapter(list); return res;};
content.js
/** * 初始化入口 */const contentListInit = async() => { //获取书籍列表 const list = await bookHelper.getBookLi(bookListModel); if (!list) { logger.error('初始化查询书籍目录失败'); return; } const res = await mapBookList(list); if (!res) { logger.error('抓取章节信息,调用 getCurBookSectionList() 进行串行遍历操作,执行完成回调出错,错误信息已打印,请查看日志!'); return; } return res;}
内容抓取的思考
书籍目录抓取其实逻辑非常简单,只需要使用async.mapLimit做一个遍历就可以保存数据了,但是我们在保存内容的时候 简化的逻辑其实就是 遍历章节列表 抓取链接里的内容。但是实际的情况是链接数量多达几万 我们从内存占用角度也不能全部保存到一个数组中,然后对其遍历,所以我们需要对内容抓取进行单元化。 普遍的遍历方式 是每次查询一定的数量,来做抓取,这样缺点是只是以一定数量做分类,数据之间没有关联,以批量方式进行插入,如果出错 则容错会有一些小问题,而且我们想一本书作为一个集合单独保存会遇到问题。因此我们采用第二种就是以一个书籍单元进行内容抓取和保存。 这里使用了 async.mapLimit(list, 1, (series, callback) => {})这个方法来进行遍历,不可避免的用到了回调,感觉很恶心。async.mapLimit()的第二个参数可以设置同时请求数量。
/* * 内容抓取步骤: * 第一步得到书籍列表, 通过书籍列表查到一条书籍记录下 对应的所有章节列表, * 第二步 对章节列表进行遍历获取内容保存到数据库中 * 第三步 保存完数据后 回到第一步 进行下一步书籍的内容抓取和保存 *//** * 初始化入口 */const contentListInit = async() => { //获取书籍列表 const list = await bookHelper.getBookList(bookListModel); if (!list) { logger.error('初始化查询书籍目录失败'); return; } const res = await mapBookList(list); if (!res) { logger.error('抓取章节信息,调用 getCurBookSectionList() 进行串行遍历操作,执行完成回调出错,错误信息已打印,请查看日志!'); return; } return res;}/** * 遍历书籍目录下的章节列表 * @param {*} list */const mapBookList = (list) => { return new Promise((resolve, reject) => { async.mapLimit(list, 1, (series, callback) => { let doc = series._doc; getCurBookSectionList(doc, callback); }, (err, result) => { if (err) { logger.error('书籍目录抓取异步执行出错!'); logger.error(err); reject(false); return; } resolve(true); }) })}/** * 获取单本书籍下章节列表 调用章节列表遍历进行抓取内容 * @param {*} series * @param {*} callback */const getCurBookSectionList = async(series, callback) => { let num = Math.random() * 1000 + 1000; await sleep(num); let key = series.key; const res = await bookHelper.querySectionList(chapterListModel, { key: key }); if (!res) { logger.error('获取当前书籍: ' + series.bookName + ' 章节内容失败,进入下一部书籍内容抓取!'); callback(null, null); return; } //判断当前数据是否已经存在 const bookItemModel = getModel(key); const contentLength = await bookHelper.getCollectionLength(bookItemModel, {}); if (contentLength === res.length) { logger.info('当前书籍:' + series.bookName + '数据库已经抓取完成,进入下一条数据任务'); callback(null, null); return; } await mapSectionList(res); callback(null, null);}
数据抓取完了 怎么保存是个问题
这里我们通过key 来给数据做分类,每次按照key来获取链接,进行遍历,这样的好处是保存的数据是一个整体,现在思考数据保存的问题
1 可以以整体的方式进行插入 优点 : 速度快 数据库操作不浪费时间。 缺点 : 有的书籍可能有几百个章节 也就意味着要先保存几百个页面的内容再进行插入,这样做同样很消耗内存,有可能造成程序运行不稳定。 2可以以每一篇文章的形式插入数据库。 优点 : 页面抓取即保存的方式 使得数据能够及时保存,即使后续出错也不需要重新保存前面的章节, 缺点 : 也很明显 就是慢 ,仔细想想如果要爬几万个页面 做 几万次*N 数据库的操作 这里还可以做一个缓存器一次性保存一定条数 当条数达到再做保存这样也是一个不错的选择。
/** * 遍历单条书籍下所有章节 调用内容抓取方法 * @param {*} list */const mapSectionList = (list) => { return new Promise((resolve, reject) => { async.mapLimit(list, 1, (series, callback) => { let doc = series._doc; getContent(doc, callback) }, (err, result) => { if (err) { logger.error('书籍目录抓取异步执行出错!'); logger.error(err); reject(false); return; } const bookName = list[0].bookName; const key = list[0].key; // 以整体为单元进行保存 saveAllContentToDB(result, bookName, key, resolve); //以每篇文章作为单元进行保存 // logger.info(bookName + '数据抓取完成,进入下一部书籍抓取函数...'); // resolve(true); }) })}
两者各有利弊,这里我们都做了尝试。 准备了两个错误保存的集合,errContentModel, errorCollectionModel,在插入出错时 分别保存信息到对应的集合中,二者任选其一即可。增加集合来保存数据的原因是 便于一次性查看以及后续操作, 不用看日志。
(PS ,其实完全用 errorCollectionModel 这个集合就可以了 ,errContentModel这个集合可以完整保存章节信息)
//保存出错的数据名称const errorSpider = mongoose.Schema({ chapter: String, section: String, url: String, key: String, bookName: String, author: String,})// 保存出错的数据名称 只保留key 和 bookName信息const errorCollection = mongoose.Schema({ key: String, bookName: String,})
我们将每一条书籍信息的内容 放到一个新的集合中,集合以key来进行命名。
总结
写这个项目 其实主要的难点在于程序稳定性的控制,容错机制的设置,以及错误的记录,目前这个项目基本能够实现直接运行 一次性跑通整个流程。 但是程序设计也肯定还存在许多问题 ,欢迎指正和交流。
写完这个项目 做了一个基于React开的前端网站用于页面浏览 和一个基于koa2.x开发的服务端, 整体技术栈相当于是 React + Redux + Koa2 本项对应前端 地址guwen-react 本项对应Node端 地址guwen-node
项目挺简单的 ,但是多了一个学习和研究 从前端到服务端的开发的环境。
以上です
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~