洞察探索如何利用兼容微信生态的小程序容器,实现跨平台开发,助力金融和车联网行业的数字化转型。
1052
2022-10-31
OpenVQA:轻量、可扩展、通用的视觉问答(VQA)研究框架
OpenVQA
OpenVQA is a general platform for visual question ansering (VQA) research, with implementing state-of-the-art approaches (e.g., BUTD, MFH, BAN and MCAN) on different benchmark datasets like VQA-v2, GQA and CLEVR. Supports for more methods and datasets will be updated continuously.
Documentation
Getting started and learn more about OpenVQA here.
Benchmark and Model Zoo
Supported methods and benchmark datasets are shown in the below table. Results and models are available in MODEL ZOO.
VQA-v2 | GQA | CLEVR | |
---|---|---|---|
BUTD | ✓ | ✓ | |
MFB | ✓ | ||
MFH | ✓ | ||
BAN | ✓ | ✓ | |
MCAN | ✓ | ✓ | ✓ |
News & Updates
v0.7.5 (30/12/2019)
Add supports and pre-trained models for the approaches on CLEVR.
v0.7 (29/11/2019)
Add supports and pre-trained models for the approaches on GQA.Add an document to tell developers how to add a new model to OpenVQA.
v0.6 (18/09/2019)
Refactoring the documents and using Sphinx to build the whole documents.
v0.5 (31/07/2019)
Implement the basic framework for OpenVQA.Add supports and pre-trained models for BUTD, MFB, MFH, BAN, MCAN on VQA-v2.
License
This project is released under the Apache 2.0 license.
Contact
This repo is currently maintained by Zhou Yu (@yuzcccc) and Yuhao Cui (@cuiyuhao1996).
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~