Not Fibonacci(矩阵连乘)
884
2022-08-23
复现经典:《统计学习方法》第22章 无监督学习方法总结
第22章 无监督学习方法总结
无监督学习方法的关系和特点
第2篇详细介绍了八种常用的统计机器学习方法,即聚类方法(包括层次聚类与k均值聚类)、奇异值分解(SVD)、主成分分析(PCA)、无监督学习方法总结 22.1无监潜在语义分析(LSA)、概率潜在语义分析(PLSA)、马尔可夫链蒙特卡罗法(CMC,包括 Metropolis-Hastings-算法和吉布斯抽样)、潜在狄利克雷分配(LDA)、 PageRank算法。此外,还简单介绍了另外三种常用的统计机器学习方法,即非负矩阵分解(NMF)变分推理、幂法。这些方法通常用于无监督学习的聚类、降维、话题分析以及图分析。
表 无监督学习方法的特点
方法 | 模型 | 策略 | 算法 | |
聚类 | 层次聚类 | 聚类树 | 类内样本距离最小 | 启发式算法 |
k均值聚类 | k中心聚类 | 样本与类中心距离最小 | 迭代算法 | |
高斯混合模型 | 高斯混合模型 | 似然函数最大 | EM算法 | |
降维 | PCA | 低维正交空间 | 方差最大 | SVD |
话题分析 | LSA | 矩阵分解模型 | 平方损失最小 | SVD |
NMF | 矩阵分解模型 | 平方损失最小 | 非负矩阵分解 | |
PLSA | PLSA模型 | 似然函数最大 | EM算法 | |
LDA | LDA模型 | 后验概率估计 | 吉布斯抽样,变分推理 | |
图分析 | PageRank | 有向图上的马尔可夫链 | 平稳分布求解 | 幂法 |
表 含有隐变量概率模型的学习方法的特点
算法 | 基本原理 | 收敛性 | 收敛速度 | 实现难易度 | 适合问题 |
EM算法 | 迭代计算、后验概率估计 | 收敛于局部最优 | 较快 | 容易 | 简单模型 |
变分推理 | 迭代计算、后验概率近似估计 | 收敛于局部最优 | 较慢 | 较复杂 | 复杂模型 |
吉布斯抽样 | 随机抽样、后验概率估计 | 依概率收敛于全局最优 | 较慢 | 容易 | 复杂模型 |
表 矩阵分解的角度看话题模型
-
《统计学习方法》: 黄海广: github: https://github.com/fengdu78/lihang-code
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~