我有 7种 实现web实时消息推送的方案,7种!

网友投稿 900 2022-10-29

我有 7种 实现web实时消息推送的方案,7种!

我有 7种 实现web实时消息推送的方案,7种!

大家好,我是小富~

我有一个朋友~

做了一个小破站,现在要实现一个站内信web消息推送的功能,对,就是下图这个小红点,一个很常用的功能。

不过他还没想好用什么方式做,这里我帮他整理了一下几种方案,并简单做了实现。

案例-,记得Star 哦

什么是消息推送(push)

消息推送(push)通常是指网站的运营工作等人员,通过某种工具对用户当前网页或移动设备APP进行的主动消息推送。

消息推送一般又分为web端消息推送和移动端消息推送。

上边的这种属于移动端消息推送,web端消息推送常见的诸如站内信、未读邮件数量、监控报警数量等,应用的也非常广泛。

在具体实现之前,咱们再来分析一下前边的需求,其实功能很简单,只要触发某个事件(主动分享了资源或者后台主动推送消息),web页面的通知小红点就会实时的+1就可以了。

通常在服务端会有若干张消息推送表,用来记录用户触发不同事件所推送不同类型的消息,前端主动查询(拉)或者被动接收(推)用户所有未读的消息数。

消息推送无非是推(push)和拉(pull)两种形式,下边我们逐个了解下。

短轮询

轮询(polling)应该是实现消息推送方案中最简单的一种,这里我们暂且将轮询分为短轮询和长轮询。

短轮询很好理解,指定的时间间隔,由浏览器向服务器发出HTTP请求,服务器实时返回未读消息数据给客户端,浏览器再做渲染显示。

一个简单的js定时器就可以搞定,每秒钟请求一次未读消息数接口,返回的数据展示即可。

setInterval(() => { // 方法请求 messageCount().then((res) => { if (res.code === 200) { this.messageCount = res.data } }) }, 1000);

效果还是可以的,短轮询实现固然简单,缺点也是显而易见,由于推送数据并不会频繁变更,无论后端此时是否有新的消息产生,客户端都会进行请求,势必会对服务端造成很大压力,浪费带宽和服务器资源。

长轮询

长轮询是对上边短轮询的一种改进版本,在尽可能减少对服务器资源浪费的同时,保证消息的相对实时性。长轮询在中间件中应用的很广泛,比如Nacos和apollo配置中心,消息队列kafka、RocketMQ中都有用到长轮询。

Nacos配置中心交互模型是push还是pull?一文中我详细介绍过Nacos长轮询的实现原理,感兴趣的小伙伴可以瞅瞅。

这次我使用apollo配置中心实现长轮询的方式,应用了一个类DeferredResult,它是在servelet3.0后经过Spring封装提供的一种异步请求机制,直意就是延迟结果。

DeferredResult可以允许容器线程快速释放占用的资源,不阻塞请求线程,以此接受更多的请求提升系统的吞吐量,然后启动异步工作线程处理真正的业务逻辑,处理完成调用DeferredResult.setResult(200)提交响应结果。

下边我们用长轮询来实现消息推送。

因为一个ID可能会被多个长轮询请求监听,所以我采用了guava包提供的Multimap结构存放长轮询,一个key可以对应多个value。一旦监听到key发生变化,对应的所有长轮询都会响应。前端得到非请求超时的状态码,知晓数据变更,主动查询未读消息数接口,更新页面数据。

当请求超过设置的超时时间,会抛出AsyncRequestTimeoutException异常,这里直接用@ControllerAdvice全局捕获统一返回即可,前端获取约定好的状态码后再次发起长轮询请求,如此往复调用。

@ControllerAdvice public class AsyncRequestTimeoutHandler { @ResponseStatus(HttpStatus.NOT_MODIFIED) @ResponseBody @ExceptionHandler(AsyncRequestTimeoutException.class) public String asyncRequestTimeoutHandler(AsyncRequestTimeoutException e) { System.out.println("异步请求超时"); return "304"; } }

我们来测试一下,首先页面发起长轮询请求/polling/watch/10086监听消息更变,请求被挂起,不变更数据直至超时,再次发起了长轮询请求;紧接着手动变更数据/polling/publish/10086,长轮询得到响应,前端处理业务逻辑完成后再次发起请求,如此循环往复。

长轮询相比于短轮询在性能上提升了很多,但依然会产生较多的请求,这是它的一点不完美的地方。

iframe流

iframe流就是在页面中插入一个隐藏的<iframe>标签,通过在src中请求消息数量API接口,由此在服务端和客户端之间创建一条长连接,服务端持续向iframe传输数据。

传输的数据通常是HTML、或是内嵌的javascript脚本,来达到实时更新页面的效果。

这种方式实现简单,前端只要一个<iframe>标签搞定了

服务端直接组装html、js脚本数据向response写入就行了

@Controller @RequestMapping("/iframe") public class IframeController { @GetMapping(path = "message") public void message(HttpServletResponse response) throws IOException, InterruptedException { while (true) { response.setHeader("Pragma", "no-cache"); response.setDateHeader("Expires", 0); response.setHeader("Cache-Control", "no-cache,no-store"); response.setStatus(HttpServletResponse.SC_OK); response.getWriter().print(" "); } } }

但我个人不推荐,因为它在浏览器上会显示请求未加载完,图标会不停旋转,简直是强迫症杀手。

SSE (我的方式)

很多人可能不知道,服务端向客户端推送消息,其实除了可以用WebSocket这种耳熟能详的机制外,还有一种服务器发送事件(Server-sent events),简称SSE。

SSE它是基于HTTP协议的,我们知道一般意义上的HTTP协议是无法做到服务端主动向客户端推送消息的,但SSE是个例外,它变换了一种思路。

SSE在服务器和客户端之间打开一个单向通道,服务端响应的不再是一次性的数据包而是text/event-stream类型的数据流信息,在有数据变更时从服务器流式传输到客户端。

整体的实现思路有点类似于在线视频播放,视频流会连续不断的推送到浏览器,你也可以理解成,客户端在完成一次用时很长(网络不畅)的-。

SSE与WebSocket作用相似,都可以建立服务端与浏览器之间的通信,实现服务端向客户端推送消息,但还是有些许不同:

SSE 是基于HTTP协议的,它们不需要特殊的协议或服务器实现即可工作;WebSocket需单独服务器来处理协议。 SSE 单向通信,只能由服务端向客户端单向通信;webSocket全双工通信,即通信的双方可以同时发送和接受信息。 SSE 实现简单开发成本低,无需引入其他组件;WebSocket传输数据需做二次解析,开发门槛高一些。 SSE 默认支持断线重连;WebSocket则需要自己实现。 SSE 只能传送文本消息,二进制数据需要经过编码后传送;WebSocket默认支持传送二进制数据。

SSE 与 WebSocket 该如何选择?

技术并没有好坏之分,只有哪个更合适

SSE好像一直不被大家所熟知,一部分原因是出现了WebSockets,这个提供了更丰富的协议来执行双向、全双工通信。对于游戏、即时通信以及需要双向近乎实时更新的场景,拥有双向通道更具吸引力。

但是,在某些情况下,不需要从客户端发送数据。而你只需要一些服务器操作的更新。比如:站内信、未读消息数、状态更新、股票行情、监控数量等场景,SEE不管是从实现的难易和成本上都更加有优势。此外,SSE 具有WebSockets在设计上缺乏的多种功能,例如:自动重新连接、事件ID和发送任意事件的能力。

前端只需进行一次HTTP请求,带上唯一ID,打开事件流,监听服务端推送的事件就可以了

服务端的实现更简单,创建一个SseEmitter对象放入sseEmitterMap进行管理

MQTT

什么是 MQTT协议?

MQTT 全称(Message Queue Telemetry Transport):一种基于发布/订阅(publish/subscribe)模式的轻量级通讯协议,通过订阅相应的主题来获取消息,是物联网(Internet of Thing)中的一个标准传输协议。

该协议将消息的发布者(publisher)与订阅者(subscriber)进行分离,因此可以在不可靠的网络环境中,为远程连接的设备提供可靠的消息服务,使用方式与传统的MQ有点类似。

TCP协议位于传输层,MQTT 协议位于应用层,MQTT 协议构建于TCP/IP协议上,也就是说只要支持TCP/IP协议栈的地方,都可以使用MQTT协议。

为什么要用 MQTT协议?

MQTT协议为什么在物联网(IOT)中如此受偏爱?而不是其它协议,比如我们更为熟悉的 HTTP协议呢?

首先HTTP协议它是一种同步协议,客户端请求后需要等待服务器的响应。而在物联网(IOT)环境中,设备会很受制于环境的影响,比如带宽低、网络延迟高、网络通信不稳定等,显然异步消息协议更为适合IOT应用程序。 HTTP是单向的,如果要获取消息客户端必须发起连接,而在物联网(IOT)应用程序中,设备或传感器往往都是客户端,这意味着它们无法被动地接收来自网络的命令。 通常需要将一条命令或者消息,发送到网络上的所有设备上。HTTP要实现这样的功能不但很困难,而且成本极高。

具体的MQTT协议介绍和实践,这里我就不再赘述了,大家可以参考我之前的两篇文章,里边写的也都很详细了。

MQTT协议的介绍

MQTT实现消息推送

Websocket

websocket应该是大家都比较熟悉的一种实现消息推送的方式,上边我们在讲SSE的时候也和websocket进行过比较。

WebSocket是一种在TCP连接上进行全双工通信的协议,建立客户端和服务器之间的通信渠道。浏览器和服务器仅需一次握手,两者之间就直接可以创建持久性的连接,并进行双向数据传输。

springboot整合websocket,先引入websocket相关的工具包,和SSE相比额外的开发成本。

org.springframework.boot spring-boot-starter-websocket

服务端使用@ServerEndpoint注解标注当前类为一个websocket服务器,客户端可以通过ws://localhost:7777/webSocket/10086来连接到WebSocket服务器端。

前端初始化打开WebSocket连接,并监听连接状态,接收服务端数据或向服务端发送数据。

页面初始化建立websocket连接,之后就可以进行双向通信了,效果还不错

自定义推送

上边我们给我出了6种方案的原理和代码实现,但在实际业务开发过程中,不能盲目的直接拿过来用,还是要结合自身系统业务的特点和实际场景来选择合适的方案。

推送最直接的方式就是使用第三推送平台,毕竟钱能解决的需求都不是问题,无需复杂的开发运维,直接可以使用,省时、省力、省心,像goEasy、极光推送都是很不错的三方服务商。

消息推送系统内部是相当复杂的,诸如消息内容的维护审核、圈定推送人群、触达过滤拦截(推送的规则频次、时段、数量、黑白名单、关键词等等)、推送失败补偿非常多的模块,技术上涉及到大数据量、高并发的场景也很多。所以我们今天的实现方式在这个庞大的系统面前只是小打小闹。

Github地址

文中所提到的案例我都一一的做了实现,整理放在了Github上,觉得有用就 Star 一下吧!

传送门:『 程序员小富 』 ,回复 『 offer 』 自行领取,祝大家 offer 拿到手软!

整理了几百本各类技术电子书,有需要的同学可以,关注公号回复 [ 666 ] 自取。还有想要加技术群的同学可以联系我,和大佬侃技术、不定期内推,程序员的内点事这都有。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:#yyds干货盘点# 解决名企真题:罪犯转移
下一篇:Firespace适用于希望使用Firebase快速开发应用程序的开发人员
相关文章

 发表评论

暂时没有评论,来抢沙发吧~