这是一个Swift playground解释了如何创建一个微小的编程语言叫Mu

网友投稿 499 2022-10-29

这是一个Swift playground解释了如何创建一个微小的编程语言叫Mu

这是一个Swift playground解释了如何创建一个微小的编程语言叫Mu

Mu

It's a playground explaining how to create a tiny programming language (Mu).

You can download the playground here or check the source code live here

Or follow the tutorial below.

Writing Your Own Programming Language

You don't need a CS degree to write a programing language, you just need to understand 3 basic steps.

The Language: Mu(μ)

Mu is a minimal language, that is consisted by a postfix operator, a binary operation and one digit numbers.

Examples:

(s 2 4) or (s (s 4 5) 4) or (s (s 4 5) (s 3 2))...

The Steps:

LexerParserInterpreter

Lexer

"In computer science, lexical analysis is the process of converting a sequence of characters into a sequence of tokens (strings with an identified "meaning"). A program that performs lexical analysis may be called a lexer, tokenizer,[1] or scanner (though "scanner" is also used to refer to the first stage of a lexer). Such a lexer is generally combined with a parser, which together analyze the syntax of programming languages..." -Wikipedia

The idea is to transform an array of charaters into an array of tokens (strings with an identified "meaning")

Example:

Because Mu is so small--only one character operator and numbers--you can simply iterate over the input and check each character.

enum Token { case parensOpen case op(String) case number(Int) case parensClose}struct Lexer { static func tokenize(_ input: String) -> [Token] { return input.characters.flatMap { switch $0 { case "(": return Token.parensOpen case ")": return Token.parensClose case "s": return Token.op(String($0)) default: if "0"..."9" ~= $0 { return Token.number(Int(String($0))!) } } return nil } }}let input = "(s (s 4 5) 4)"let tokens = Lexer.tokenize(input)

Parser

Parsing or syntactic analysis is the process of analysing a string of symbols, either in natural language or in computer languages, conforming to the rules of a formal grammar... -Wikipedia

Grammar:

expression: parensOpen operator primaryExpression primaryExpression parensClose

primaryExpression: expression | number

parensOpen: "("

parensClose: ")"

operator: "s"

number: [0-9]

Mu's grammar is a context-free grammar, that means it describes all possible strings in the language. The parser will start from the top (root of the generated tree) and it will go until the lowest node.

Tip: the code should be a direct representation of the grammar

func parseExpression() -> ExpressionNode { ... firstPrimaryExpression = parsePrimaryExpression() secondPrimaryExpression = parsePrimaryExpression() ...}func parsePrimaryExpression() -> PrimaryExpressionNode { return parseExpression() || parseNumber()}

indirect enum PrimaryExpressionNode { case number(Int) case expression(ExpressionNode)}struct ExpressionNode { var op: String var firstExpression: PrimaryExpressionNode var secondExpression: PrimaryExpressionNode}struct Parser { var index = 0 let tokens: [Token] init(tokens: [Token]) { self.tokens = tokens } mutating func popToken() -> Token { let token = tokens[index] index += 1 return token } mutating func peekToken() -> Token { return tokens[index] } mutating func parse() throws -> ExpressionNode { return try parseExpression() } mutating func parseExpression() throws -> ExpressionNode { guard case .parensOpen = popToken() else { throw ParsingError.unexpectedToken } guard case let Token.op(_operator) = popToken() else { throw ParsingError.unexpectedToken } let firstExpression = try parsePrimaryExpression() let secondExpression = try parsePrimaryExpression() guard case .parensClose = popToken() else { throw ParsingError.unexpectedToken } return ExpressionNode(op: _operator, firstExpression: firstExpression, secondExpression: secondExpression) } mutating func parsePrimaryExpression() throws -> PrimaryExpressionNode { switch peekToken() { case .number: return try parseNumber() case .parensOpen: let expressionNode = try parseExpression() return PrimaryExpressionNode.expression(expressionNode) default: throw ParsingError.unexpectedToken } } mutating func parseNumber() throws -> PrimaryExpressionNode { guard case let Token.number(n) = popToken() else { throw ParsingError.unexpectedToken } return PrimaryExpressionNode.number(n) } }//MARK: Utilsextension ExpressionNode: CustomStringConvertible { public var description: String { return "\(op) -> [\(firstExpression), \(secondExpression)]" }}extension PrimaryExpressionNode: CustomStringConvertible { public var description: String { switch self { case .number(let n): return n.description case .expression(let exp): return exp.description } }}let input = "(s 2 (s 3 5))"let tokens = Lexer.tokenize(input)var parser = Parser(tokens: tokens)var ast = try! parser.parse()

Interpreter

"In computer science, an interpreter is a computer program that directly executes, i.e. performs, instructions written in a programming or scripting language, without previously compiling them into a machine language program." -Wikipedia

Example:

Mu's interpreter will walk through its A.S.T and compute a value by applying an operator to the children nodes.

enum InterpreterError: Error { case unknownOperator}struct Interpreter { static func eval(_ expression: ExpressionNode) throws -> Int { let firstEval = try eval(expression.first) let secEval = try eval(expression.second) if expression.op == "s" { return firstEval + secEval } throw InterpreterError.unknownOperator } static func eval(_ prim: PrimaryExpressionNode) throws -> Int { switch prim { case .expression(let exp): return try eval(exp) case .number(let n): return Int(n) } } }let input = "(s (s 5 2) 4)"let tokens = Lexer.tokenize(input)var parser = Parser(tokens: tokens)let ast = try! parser.parse()try! Interpreter.eval(ast)

Conclusion

Given an input let input = "(s (s 4 5) 4)Extract an array of tokens (Lexing) let tokens = Lexer.tokenize(input)Parse the given tokens into a tree (Parsing)

var parser = Parser(tokens: tokens)let ast = try! parser.parse()

And walk through this tree, and compute the values contained inside a node (Interpreting) let result = try! Interpreter.eval(ast)

Resources

https://ruslanspivak.com/lsbasi-part1/https://amazon.com/Compilers-Principles-Techniques-Tools-2nd/dp/0321486811http://llvm.org/docs/tutorial/

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:多模块maven的deploy集成gitlab ci自动发版配置
下一篇:fun2比fun3稍快点
相关文章

 发表评论

暂时没有评论,来抢沙发吧~