Det3D - 基于PyTorch的通用 3D 目标检测框架.

网友投稿 1146 2022-10-27

Det3D - 基于PyTorch的通用 3D 目标检测框架.

Det3D - 基于PyTorch的通用 3D 目标检测框架.

Det3D

A general 3D Object Detection codebase in PyTorch.

1. Introduction

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art methods on major benchmarks like KITTI(ViP) and nuScenes(CBGS). Key features of Det3D include the following aspects:

Multi Datasets Support: KITTI, nuScenes, LyftPoint-based and Voxel-based model zooState-of-the-art performanceDDP & SyncBN

2. Installation

Please refer to INSTALATION.md.

3. Quick Start

Please refer to GETTING_STARTED.md.

4. Model Zoo

4.1 nuScenes

mAPmATEmASEmAOEmAVEmAAENDSckpt
CBGS49.90.3350.2560.3230.2510.19761.3link
PointPillar41.80.3630.2640.3770.2880.19856.0link

The original model and prediction files are available in the CBGS README.

4.2 KITTI

Second on KITTI(val) Dataset

car AP @0.70, 0.70, 0.70:bbox AP:90.54, 89.35, 88.43bev AP:89.89, 87.75, 86.813d AP:87.96, 78.28, 76.99aos AP:90.34, 88.81, 87.66

PointPillars on KITTI(val) Dataset

car AP@0.70, 0.70, 0.70:bbox AP:90.63, 88.86, 87.35bev AP:89.75, 86.15, 83.003d AP:85.75, 75.68, 68.93aos AP:90.48, 88.36, 86.58

4.3 Lyft

Lyft Config

4.4 Waymo

5. Functionality

Models VoxelNet SECOND PointPillars Features Multi task learning & Multi-task Learning Distributed Training and Validation SyncBN Flexible anchor dimensions TensorboardX Checkpointer & Breakpoint continue Self-contained visualization Finetune Multiscale Training & Validation Rotated RoI Align

6. TODO List

To Be Released CGBS on Lyft(val) Dataset Models PointRCNN PIXOR

7. Call for contribution.

Support Waymo Dataset.Add other 3D detection / segmentation models, such as VoteNet, STD, etc.

8. Developers

Benjin Zhu , Bingqi Ma

9. License

Det3D is released under the Apache licenes.

10. Acknowledgement

mmdetectionmmcvsecond.pytorchmaskrcnn_benchmark

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:使用Turnstile实现Perfect Web框架的身份验证
下一篇:spring中IOC控制反转依赖注入和new对象的区别说明
相关文章

 发表评论

暂时没有评论,来抢沙发吧~