MoGA: 超越MobileNetV3的神经架构搜索,小米AI的最新NAS成果
MoGA: 超越MobileNetV3的神经架构搜索,小米AI的最新NAS成果
MoGA: Searching Beyond MobileNetV3
We propose the first Mobile GPU-Aware (MoGA) neural architecture search in order to be precisely tailored for real-world applications. Further, the ultimate objective to devise a mobile network lies in achieving better performance by maximizing the utilization of bounded resources. While urging higher capability and restraining time consumption, we unconventionally encourage increasing the number of parameters for higher representational power. Undoubtedly, these three forces are not reconcilable and we have to alleviate the tension by weighted evolution techniques. Lastly, we deliver our searched networks at a mobile scale that outperform MobileNetV3 under the similar latency constraints, i.e., MoGA-A achieves 75.9% top-1 accuracy on ImageNet, MoGA-B meets 75.5% which costs only 0.5ms more on mobile GPU than MobileNetV3, which scores 75.2%. MoGA-C best attests GPU-awareness by reaching 75.3% and being slower on CPU but faster on GPU.
MoGA Architectures
Requirements
Python 3.6 +Pytorch 1.0.1 +The pretrained models are accessible after submitting a questionnaire: https://forms.gle/o2cUfQPieVcm3t8B8.国内用户填写问卷 https://wj.qq.com/s2/4185162/97a0 后就可以-预训练模型。
Discuss with us!
We provide an instant-messaging dicussion group for Chinese users. For international users, please contact us with emails.
QQ 群名称:小米 AutoML 交流反馈群 号:702473319 (加群请填写“神经网络架构搜索”的英文简称)
We Are Hiring (Full-time & Internship)!
Good news! We are AutoML Team from Xiaomi AI Lab and there are few open positions, welcome application from new graduates and professionals skilled in Deep Learning (Vision, Speech, NLP etc.)!
Please send your resume to zhangbo11@xiaomi.com人工智能算法/软件工程师(含实习生),简历请发送至 zhangbo11@xiaomi.com
Benchmarks on ImageNet
ImageNet Dataset
We use the standard ImageNet 2012 dataset, the only difference is that we reorganized the validation set by their classes.
Evaluation
To evaluate,
python3 verify.py --model [MoGA_A|MoGA_B|MoGA_C] --device [cuda|cpu] --val-dataset-root [path/to/ILSVRC2012] --pretrained-path [path/to/pretrained_model]
Citation
This repository goes with this paper, your citations are welcomed!
@article{chu2019moga, title={MoGA: Searching Beyond MobileNetV3}, author={Chu, Xiangxiang and Zhang, Bo and Xu, Ruijun}, journal={ICASSP}, url={https://arxiv.org/pdf/1908.01314.pdf}, year={2020}}
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~