MobileNet-YOLO 检测框架的一个caffe实现

网友投稿 811 2022-10-25

MobileNet-YOLO 检测框架的一个caffe实现

MobileNet-YOLO 检测框架的一个caffe实现

MobileNet-YOLO Caffe

A caffe implementation of MobileNet-YOLO detection network , train on 07+12 , test on VOC2007

NetworkmAPResolutionDownloadNetScopeInference time (GTX 1080)Inference time (i5-7500)
MobileNetV2-YOLOv370.7352caffemodelgraph6.65 ms217 ms

inference time was log from script , does not include pre-processingthe benchmark of cpu performance on Tencent/ncnn frameworkthe deploy model was made by merge_bn.py, set eps = your prototxt batchnorm epsold models please see here

This project also support ssd framework , and here lists the difference from ssd caffe

Multi-scale training , you can select input resoluton when inferenceModified from last update caffe (2018)Support multi-task modelpelee + driverable map

Update

CODE UPDATED FOR OPENCV 3Channel pruning

CNN Analyzer

Use this tool to compare macc and param , train on 07+12 , test on VOC2007

networkmAPresolutionmaccparamprunedIOU_THRESHGIOU
MobileNetV2-YOLOv30.7073521.22G4.05MNNN
MobileNetV2-YOLOv30.7153521.22G4.05MNYY
MobileNetV2-YOLOv30.7023521.01G2.88MYNN
Pelee-SSD0.7093041.2G5.42MNNN
Mobilenet-SSD0.683001.21G5.43MNNN
MobilenetV2-SSD-lite0.7093361.10G5.2MNNN

MobileNetV2-YOLOv3 and MobilenetV2-SSD-lite were not offcial model

Coverted TensorRT models

TensorRT-Yolov3-models

Pelee-Driverable_Maps, run 89 ms on jetson nano , running project

YOLO Segmentation

How to use

Windows Version

Caffe-YOLOv3-Windows

Oringinal darknet-yolov3

Converter

test on coco_minival_lmdb (IOU 0.5)

NetworkmAPResolutionDownloadNetScope
yolov354.2416caffemodelgraph
yolov3-spp59.8608caffemodelgraph

Model VisulizationTool

Supported on Netron , browser version

Build , Run and Training

See wiki

See docker

License and Citation

Please cite MobileNet-YOLO in your publications if it helps your research:

@article{MobileNet-YOLO, Author = {eric612 , Avisonic , ELAN}, Year = {2018}}

Reference

https://github.com/weiliu89/caffe/tree/ssd

https://pjreddie.com/darknet/yolo/

https://github.com/chuanqi305/MobileNet-SSD

https://github.com/gklz1982/caffe-yolov2

https://github.com/yonghenglh6/DepthwiseConvolution

https://github.com/alexgkendall/caffe-segnet

https://github.com/BVLC/caffe/pull/6384/commits/4d2400e7ae692b25f034f02ff8e8cd3621725f5c

https://cityscapes-dataset.com/

https://github.com/TuSimple/tusimple-benchmark/wiki

https://github.com/Robert-JunWang/Pelee

https://github.com/hujie-frank/SENet

https://github.com/lusenkong/Caffemodel_Compress

Cudnn convolution

https://github.com/chuanqi305/MobileNetv2-SSDLite/tree/master/src

Acknowledgements

https://github.com/AlexeyAB/darknet

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:GZIPOutputStream 类源码分析
下一篇:万能 Makefile 模板
相关文章

 发表评论

暂时没有评论,来抢沙发吧~