cf86d

网友投稿 631 2022-10-22

cf86d

cf86d

​​ D. Powerful array time limit per test 5 seconds

memory limit per test 256 megabytes

input standard input

output standard output

An array of positive integers a1, a2, …, an is given. Let us consider its arbitrary subarray al, al + 1…, ar, where 1 ≤ l ≤ r ≤ n. For every positive integer s denote by Ks the number of occurrences of s into the subarray. We call the power of the subarray the sum of products Ks·Ks·s for every positive integer s. The sum contains only finite number of nonzero summands as the number of different values in the array is indeed finite.

You should calculate the power of t given subarrays.

Input First line contains two integers n and t (1 ≤ n, t ≤ 200000) — the array length and the number of queries correspondingly.

Second line contains n positive integers ai (1 ≤ ai ≤ 106) — the elements of the array.

Next t lines contain two positive integers l, r (1 ≤ l ≤ r ≤ n) each — the indices of the left and the right ends of the corresponding subarray.

Output Output t lines, the i-th line of the output should contain single positive integer — the power of the i-th query subarray.

Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preferred to use cout stream (also you may use %I64d).

Examples Input 3 2 1 2 1 1 2 1 3 Output 3 6 Input 8 3 1 1 2 2 1 3 1 1 2 7 1 6 2 7 Output 20 20 20 Note Consider the following array (see the second sample) and its [2, 7] subarray (elements of the subarray are colored):

Then K1 = 3, K2 = 2, K3 = 1, so the power is equal to 32·1 + 22·2 + 12·3 = 20.

这题最后输出要用i64d才行,lld会T掉。 题意求【l,r】中各个数出现次数的平方×这个数的数值,其实就是小b的询问多加了点东西,这题卡常。。

#include#include#include#define LL long long#define N 220000inline int read(){ int x=0;char ch=getchar(); while (ch<'0'||ch>'9') ch=getchar(); while (ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();} return x;}struct node{ int l,r,id,bl;}q[N];int n,t,n1;long long f[N<<2+1],a[N];inline bool cmp(node a,node b){ return a.bl==b.bl?a.rl) --l1,tmp+=((f[a[l1]]<<1)+1)*a[l1],f[a[l1]]++; while (rr1) ++r1,tmp+=((f[a[r1]]<<1)+1)*a[r1],f[a[r1]]++; ans[id]=tmp; } for (int i=1;i<=t;++i) printf("%I64d\n",ans[i]); return 0;}

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:poj2752
下一篇:moa-frontend- 基于 jQuery + bootstrap 的前端框架
相关文章

 发表评论

暂时没有评论,来抢沙发吧~