POJ 2104 - K-th Number 划分树初步(不能有相同元素)
划分树的模型是用来解决一类求一列数的某个区间第k小数的问题.当然也可以通过二分来利用划分树求一个数在某区间里是第几小...跟我的感觉划分树和线段树很多地方挺相似的..
1、划分树的构造
划分树和线段树一样...采用隐性建树...建造的是二叉树...划分树通常使用一个二维数组存储: tree[t][n] ...第一维代表是树的第几层..第二维说明了这层n个数的排列情况..该层n个数虽然连续存储在一起...但可能隐形的分为了好几段.或者说属于不同的点...抽象的说..这些层数列记录的是一个快排的过程..每次快排的基准值是这一段的中位数(中间大的数)....每一层..还未有序的一块就是一个点...可见.第一层..n个数为一个点..第二层1~mid为一个点..mid+1~n为一个点..在这样下去...到了最后面一层..已经成为了一列非递减的数列...而对于每个节点(节点记录的是一排数)..其左右孩子就是这个节点代表的数列段以中位数为基准值后..小于基准值的点以及基准点按照原来的顺序放到排列好..作为其左子树..其他的作为右子树..为了方便后面的统计..构造时同时做一个预处理...记录每一层..到了每个点..其左侧有多少个点划入了左子树...
2、询问过程
询问是找[L,R]区间的第k小数...query函数的形式和线段树一样...那么从第一层进入划分树递归找...区间[L,R]有LtoR个数进入了左子树(建树时做了预处理,直接算出)..若LtoR>=k..那么答案肯定在其左子数上...否则就在其右子树上...但这里和线段树有区别了..线段树在带的时候[L,R]是不变的..这里要调整..因为这里的[L,R]随着层数的深入..是不断的通过映射关系改变的...具体调整方法..参考代码..
Program:
#include#include#include#include#include#include#include#include
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
暂时没有评论,来抢沙发吧~