常见排序算法详解

网友投稿 594 2022-10-17

常见排序算法详解

常见排序算法详解

常见排序算法的时间复杂度和空间复杂度及稳定性分析:

一、冒泡排序

我们接触的第一个排序算法想必就是冒泡排序了,一般常见的排序算法中最简单的也就是冒泡排序了,它的核心思想在于从前往后开始冒泡,逐一比较两个数的大小。

具体思路:比较相邻元素元素的大小,如果前一个比后一个大,就彼此交换位置,重复以上的步骤,最后将会得到一个升序的数组。

代码示例:

void BubbleSort(vector& v){ int len = v.size(); for (int i = 0; i < len - 1; ++i) for (int j = 0; j < len - 1 - i; ++j) if (v[j] > v[j + 1]) swap(v[j], v[j + 1]);}

冒泡排序优化版

冒泡有一个最大的问题就是这种算法不管不管你有序还是没序,闭着眼睛把你循环比较了再说。假如数组原本就是有序,根本不需要排序,它仍然是双层循环一个不少的把数据遍历,这其实就是做了没必要做的事情,属于浪费资源。

针对这个问题,我们可以设定一个临时遍历来标记该数组是否已经有序,如果有序了就不用遍历了。

void BubbleSort_orderly(vector& v){ int len = v.size(); bool orderly = false; for (int i = 0; i < len - 1 && !orderly; ++i) { orderly = true; for (int j = 0; j < len - 1 - i; ++j) { if (v[j] > v[j + 1]) { // 从小到大 orderly = false; // 发生交换则仍非有序 swap(v[j], v[j + 1]); } } }}

二、快速排序

要说排序算法中用的最多的就要属快速排序了,它的核心思想也是分治法,分而治之。它的实现方式是每次从序列中选出一个基准值,其他数依次和基准值做比较,比基准值大的放右边,比基准值小的放左边,然后再对左边和右边的两组数分别选出一个基准值,进行同样的比较移动,重复步骤,直到最后都变成单个元素,整个数组就成了有序的序列。

快速排序的思想非常重要,大家一定要理解。此外,快速排序的时间复杂度是O(n log n),空间复杂度为 O(1)。但这是建立在每次切分都能把数组一刀切两半差不多大的前提下,如果出现极端情况,需要切分 n – 1 次才能完成整个快速排序的过程,这种情况下,时间复杂度就退化成了 O(n^2),当然极端情况出现的概率也是比较低的。

代码示例:

void quick_sort(int q[], int l, int r){ if (l >= r) return; int i = l - 1, j = r + 1, x = q[l + r >> 1]; while (i < j) { do i ++ ; while (q[i] < x); do j -- ; while (q[j] > x); if (i < j) swap(q[i], q[j]); } quick_sort(q, l, j), quick_sort(q, j + 1, r);}

三、归并排序

归并算法的核心思想也是分治法,就是将一个数组一刀切两半,递归切,直到切成单个元素,然后重新组装合并,单个元素合并成小数组,两个小数组合并成大数组,直到最终合并完成,排序完毕。

具体思路:把数据分为两段,从两段中逐个选最小的元素移入新数据段的末尾。可从上到下或从下到上进行。归并排序的核心思想是分治,分而治之,将一个大问题分解成无数的小问题进行处理,处理之后再合并,这里我们采用递归来实现:

void merge_sort(int q[], int l, int r){ if (l >= r) return; int mid = l + r >> 1; merge_sort(q, l, mid); merge_sort(q, mid + 1, r); int k = 0, i = l, j = mid + 1; while (i <= mid && j <= r) if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ]; else tmp[k ++ ] = q[j ++ ]; while (i <= mid) tmp[k ++ ] = q[i ++ ]; while (j <= r) tmp[k ++ ] = q[j ++ ]; for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];}

四、堆排序

堆是是一棵完全二叉树,堆上面的每个节点满足父节点的值大于子节点。若根节点的值比所有节点的值都大, 称为最大堆;根节点的值比所有节点的值都小, 称为最小堆;

具体思路:将待排序的序列构造成一个大顶堆。此时,整个序列的最大值就是堆顶的根结点。将它移走(将其与堆数组的末尾元素交换,此时末尾元素就是最大值),然后将剩余的n-1和序列重新构造成一个堆,这也就会得到n个元素中的次大值。如此反复执行,便能得到一个有序序列。

// 堆排序:(最大堆,有序区)。从堆顶把根卸出来放在有序区之前,再恢复堆。void max_heapify(int arr[], int start, int end){ int dad = start; int son = dad * 2 + 1; while (son <= end) { if (son + 1 <= end && arr[son] < arr[son + 1]) son++; if (arr[dad] > arr[son]) return; else { swap(arr[dad], arr[son]); dad = son; son = dad * 2 + 1; } }} void heap_sort(int arr[], int len){ for (int i = len / 2 - 1; i >= 0; i--) max_heapify(arr, i, len - 1); for (int i = len - 1; i > 0; i--) { swap(arr[0], arr[i]); max_heapify(arr, 0, i - 1); }}

五、桶排序

桶排序将要排的数据分到多个有序的桶里,每个桶里的数据再单独排序,再把每个桶的数据依次取出,即可完成排序。

具体思路:先设置一个定量的数组当作空桶子;寻访序列,并且把项目一个一个放到对应的桶子去;对每个不是空的桶子进行排序;从不是空的桶子里把项目再放回原来的序列中。

代码示例:

void insert_sort(vector& arr){ int n = arr.size(); int j = 0, cur = 0; for (int i = 1; i < n; i++) { cur = arr[i]; j = i - 1; //进行比较,插入 while (j >= 0 && arr[j] > cur) { arr[j + 1] = arr[j]; j--; } arr[j+1] = cur; }}void bucket_sort(vector& arr){ if (arr.size() == 0) return; int minvalue = arr[0]; int maxvalue = arr[0]; for (int i = 1; i < arr.size(); i++) { if (arr[i] < minvalue) { minvalue = arr[i]; // 输入数据的最小值 } else if (arr[i] > maxvalue) { maxvalue = arr[i]; // 输入数据的最大值 } } //桶进行初始化 int DEFAULT_BUCKET_SIZE = 5; // 桶的大小的默认为5 int bucketCount = (maxvalue - minvalue) / DEFAULT_BUCKET_SIZE + 1; //计算桶的数量 vector> buckets(bucketCount, vector()); // 利用映射函数将数据分配到各个桶中 for (int i = 0; i < arr.size(); i++) { buckets[(arr[i] - minvalue) / DEFAULT_BUCKET_SIZE].push_back(arr[i]); } int index = 0; for (int i = 0; i < buckets.size(); i++) { insert_sort(buckets[i]); // 对每个桶进行排序,这里使用了插入排序 for (int j = 0; j < buckets[i].size(); j++) { arr[index++] = buckets[i][j]; } }}

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Netty分布式Server启动流程服务端初始化源码分析
下一篇:10天从入门到精通Vue(一)-vue基本概念和基础语法(v-text、v-bind、v-on、v-model等)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~