洞察企业如何通过模块化APP集成工具高效管理多平台小程序
742
2022-10-13
Synet - 是CPU上的小型推理神经网络框架(C++头文件库)
Introduction
Synet is a small framework to inference neural network on CPU. Synet uses models previously trained by other deep neural network frameworks.
The main advantages of Synet are:
Synet is faster then most other DNN original frameworks (has great single thread CPU performance).Synet is header only, small C++ library.Synet has only one external dependence - Simd Library.
Darknet Test project for Linux
To build test to compare Synet and Darknet for Linux you can run following bash script:
git clone -b master --recurse-submodules -v https://github.com/ermig1979/Synet.git clonecd clone./build.sh darknet
And application darknet_test will be created in directory build. In order to run this test use ./test.sh bash script (in the file manually uncomment unit test that you need).
./test.sh
Inference Engine Test project for Linux
To build test to compare Synet and Inference Engine for Linux you can run following bash script:
git clone -b master --recurse-submodules -v https://github.com/ermig1979/Synet.git clonecd clone./build.sh inference_engine
And application inference_engine_test will be created in directory build. There are several test scripts:
For manual testing you can use ./test.sh (in the file you have to manually uncomment unit test that you need).Script ./check.sh checks correctness of all tests.Script ./perf.sh measures performance of Synet compare to Inference Engine.
Use samples for Linux
To build use samples for Linux you can run following bash script:
./build.sh use_samples
And application use_face_detection will be created in directory build.
Darknet model conversion
In order to convert Darknet trained model to Synet model you can use darknet_test application:
./build/darknet_test -m convert -fm darknet_model.cfg -fw darknet_weigths.dat -sm synet_model.xml -sw synet_weigths.bin
Other model conversion
In order to convert Caffe, Tensorflow, MXNet or ONNX trained models to Synet format you previously need to convert they to Inference Engine models format. Then use inference_engine_test application:
./build/inference_engine_test -m convert -fm ie_model.xml -fw ie_weigths.bin -sm synet_model.xml -sw synet_weigths.bin
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~