elasticsearch集群cluster discovery可配式模块示例分析

网友投稿 802 2022-10-11

elasticsearch集群cluster discovery可配式模块示例分析

elasticsearch集群cluster discovery可配式模块示例分析

目录前言Discovery模块的概述cluster节点探测MasterFaultDetection的启动代码master连接失败的逻辑MasterPing的关键代码

前言

elasticsearch cluster实现了自己发现机制zen。Discovery功能主要包括以下几部分内容:master选举,master错误探测,集群中其它节点探测,单播多播ping。本篇会首先概述以下Discovery这一部分的功能,然后介绍节点检测。其它内容会在接下来介绍。

Discovery模块的概述

discovery是可配式模块,官方支持亚马逊的Azure discovery,Google Compute Engine,EC2 Discovery三种发现机制,根据插件规则完全可以自己实现其它的发现机制。整个模块通过实现guice的DiscoveryModule对外提供模块的注册和启动, 默认使用zen discovery。发现模块对外接口为DiscoveryService,它的方法如下所示:

它本质上是discovery的一个代理,所有的功能最终都是由所绑定的discovery所实现的。节点启动时通过DiscoveryModule获取DiscoveryService,然后启动DiscoveryService,DiscoveryService启动绑定的Discovery,整个功能模块就完成了加载和启动。这也是elasticsearch所有模块的实现方式,通过module对外提供绑定和获取,通过service接口对外提供模块的功能,在后面的分析中会经常遇到。

cluster节点探测

接下来分析cluster的一个重要功能就是节点探测。cluster中不能没有master节点,因此集群中所有节点都要周期探测master节点,一旦无法检测到,将会进行master选举。同时作为master,对于节点变动也要时刻关注,因此它需要周期性探测集群中所有节点,确保及时剔除已经宕机的节点。这种相互间的心跳检测就是cluster的faultdetection。下图是faultdetection的继承关系:

有两种实现方式,分别是master探测集群中其它节点和其它节点对master节点的探测。

FaultDetection只要一个抽象方法handleTransportDisconnect,该方法在内部类FDConnectionListener中被调用。在elasticsearch中大量使用了listener的异步方式,异步可以极大提升系统性能。它的代码如下所示:

private class FDConnectionListener implements TransportConnectionListener {

@Override

public void onNodeConnected(DiscoveryNode node) {

}

@Override

public void onNodeDisconnected(DiscoveryNode node) {

handleTransportDisconnect(node);

}

}

faultdetection启动时会注册相应的FDConnetionListener,当探测到节点丢失,会通过onNodeDisconnected方法回调对于的handleTransportDisconnect进行处理。

MasterFaultDetection的启动代码

privatevoidinnerStart(finalDiscoveryNode masterNode) {

this.masterNode = masterNode;

this.retryCount = 0;

this.notifiedMasterFailure.set(false);

// 尝试连接master节点

try {

transportService.connectToNode(masterNode);

} catch (final Exception e) {

// 连接失败通知masterNode失败

notifyMasterFailure(masterNode, "failed to perform initial connect [" + e.getMessage() + "]");

return;

}

    //关闭之前的masterping,重启新的masterping

if (masterPinger != null) {

masterPinger.stop();

}

this.masterPinger = new MasterPinger();

// 周期之后启动masterPing,这里并没有周期启动masterPing,只是设定了延迟时间。

threadPool.schedule(pingInterval, ThreadPool.Names.SAME, masterPinger);

}

代码有有详细注释,就不再过多解释。

master连接失败的逻辑

代码如下:

private void notifyMasterFailure(final DiscoveryNode masterNode, final String reason) {

if (notifiedMasterFailure.compareAndSet(false, true)) {

threadPool.generic().execute(new Runnable() {

@Override

public void run() {

            //通知所有listener master丢失

for (Listener listener : listeners) {

listener.onMasterFailure(masterNode, reason);

}

}

});

stop("master failure, " + reason);

}

}

在ZenDiscovery中实现了listener.onMasterFailure接口。会进行master丢失的相关处理,在后面再分析。

MasterPing的关键代码

private class MasterPinger implements Runnable {

private volatile boolean running = true;

public void stop() {

this.running = false;

}

@Override

public void run() {

if (!running) {

// return and don't spawn...

return;

}

final DiscoveryNode masterToPing = masterNode;

final MasterPingRequest request = new MasterPingRequest(clusterService.localNode().id(), masterToPing.id(), clusterName);

final TransportRequestOptions options = options().withType(TransportRequestOptions.Type.PING).withTimeout(pingRetryTimeout);

transportService.sendRequest(masterToPing, MASTER_PING_ACTION_NAME, request, options, new BaseTransportResponseHandler() {

@Override

public MasterPingResponseResponse newInstance() {

return new MasterPingResponseResponse();

}

@Override

public void handleResponse(MasterPingResponseResponse response) {

if (!running) {

return;

}

// reset the counter, we got a good result

MasterFaultDetection.this.retryCount = 0;

// check if the master node did not get switched on us..., if it did, we simply return with no reschedule

if (masterToPing.equals(MasterFaultDetection.this.masterNode())) {

// 启动新的ping周期

threadPool.schedule(pingInterval, ThreadPool.Names.SAME, MasterPinger.this);

}

}

@Override

public void handleException(TransportException exp) {

if (!running) {

return;

}

synchronized (masterNodeMutex) {

// check if the master node did not get switched on us...

if (masterToPing.equals(MasterFaultDetection.this.masterNode())) {

if (exp instanceof ConnectTransportException || exp.getCause() instanceof ConnectTransportException) {

handleTransportDisconnect(masterToPing);

return;

} else if (exp.getCause() instanceof NoLongerMasterException) {

logger.debug("[master] pinging a master {} that is no longer a master", masterNode);

notifyMasterFailure(masterToPing, "no longer master");

return;

} else if (exp.getCause() instanceof NotMasterException) {

logger.debug("[master] pinging a master {} that is not the master", masterNode);

notifyMasterFailure(masterToPing, "not master");

return;

} else if (exp.getCause() instanceof NodeDoesNotExistOnMasterException) {

logger.debug("[master] pinging a master {} but we do not exists on it, act as if its master failure", masterNode);

notifyMasterFailure(masterToPing, "do not exists on master, act as master failure");

return;

}

int retryCount = ++MasterFaultDetection.this.retryCount;

logger.trace("[master] failed to ping [{}], retry [{}] out of [{}]", exp, masterNode, retryCount, pingRetryCount);

if (retryCount >= pingRetryCount) {

logger.debug("[master] failed to ping [{}], tried [{}] times, each with maximum [{}] timeout", masterNode, pingRetryCount, pingRetryTimeout);

// not good, failure

notifyMasterFailure(masterToPing, "failed to ping, tried [" + pingRetryCount + "] times, each with maximum [" + pingRetryTimeout + "] timeout");

} else {

// resend the request, not reschedule, rely on send timeout

transportService.sendRequest(masterToPing, MASTER_PING_ACTION_NAME, request, options, this);

}

}

}

}

);

}

}

MasterPing是一个线程,在innerStart的方法中没有设定周期启动masterping,但是masterping需要周期进行,这个秘密就在run 方法中,如果ping成功就会重启一个新的ping。这样既保证了ping线程的唯一性同时也保证了ping的顺http://序和间隔。

ping的方式跟之前一样是也是通过transport发送一个masterpingrequest,进行一个连接。节点收到该请求后,如果已不再是master会抛出NotMasterException,状态更新出差会抛出其它异常,异常会通过。否则会正常响应notifyMasterFailure方法处理跟启动逻辑一样。

对于网络问题导致的无响应情况,会调用handleTransportDisconnect(masterToPing)方法处理。masterfaultDetection对该方法的实现如下:

protected void handleTransportDisconnect(DiscoveryNode node) {

    //这里需要同步

synchronized (masterNodeMutex) {

        //master 已经换成其它节点,就没必要再连接

if (!node.equals(this.masterNode)) {

return;

}

if (connectOnNetworkDisconnect) {

try {

            //尝试再次连接

transportService.connectToNode(node);

// if all is well, make sure we restart the pinger

if (masterPinger != null) {

masterPinger.stop();

}

            //连接成功启动新的masterping

this.masterPinger = new MasterPinger();

// we use schedule with a 0 time value to run the pinger on the pool as it will run on later

threadPool.schedule(TimeValue.timeValueMillis(0), ThreadPool.Names.SAME, masterPinger);

} catch (Exception e) {

            //连接出现异常,启动master节点丢失通知

logger.trace("[master] [{}] transport disconnected (with verified connect)", masterNode);

notifyMasterFailure(masterNode, "transport disconnected (with verified connect)");

}

} else {

          //不需要重连,通知master丢失。

logger.trace("[master] [{}] transport disconnected", node);

notifyMasterFailure(node, "transport disconnected");

}

}

}

这就是masterfaultDetection的整个流程:启动中如果master丢失则通知节点丢失,否则在一定延迟(3s)后启动masterping,masterping线程尝试连接master节点,如果master节点网络失联,尝试再次连接。master节点收到masterpingrequest后首先看一下自己还是不是master,如果不是则抛出异常,否则正常回应。节点如果收到响应是异常则启动master丢失通知,否则此次ping结束。在一定延迟后启动新的masterping线程。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:maven打jar包指定核心运行的main class的配置
下一篇:Python_day01_笔记
相关文章

 发表评论

暂时没有评论,来抢沙发吧~