react 前端框架如何驱动企业数字化转型与创新发展
823
2022-10-03
LeetCode-1343. Maximum Product of Splitted Binary Tree
Given a binary tree root. Split the binary tree into two subtrees by removing 1 edge such that the product of the sums of the subtrees are maximized.
Since the answer may be too large, return it modulo 10^9 + 7.
Example 1:
Input: root = [1,2,3,4,5,6]Output: 110Explanation: Remove the red edge and get 2 binary trees with sum 11 and 10. Their product is 110 (11*10)
Example 2:
Input: root = [1,null,2,3,4,null,null,5,6]Output: 90Explanation: Remove the red edge and get 2 binary trees with sum 15 and 6.Their product is 90 (15*6)
Example 3:
Input: root = [2,3,9,10,7,8,6,5,4,11,1]Output: 1025
Example 4:
Input: root = [1,1]Output: 1
Constraints:
Each tree has at most50000 nodes and at least2 nodes.Each node's value is between[1, 10000].
题解:
class Solution {public: int mod = 1e9 + 7; void calSum(TreeNode* &root) { if (root != NULL) { calSum(root->left); calSum(root->right); if (root->left != NULL) { root->val += root->left->val; } if (root->right != NULL) { root->val += root->right->val; } } } void getMax(TreeNode* &root, int sum, long long &res) { if (root != NULL) { getMax(root->left, sum, res); getMax(root->right, sum, res); if (root->left != NULL) { long long val = (long long)(sum - root->left->val) * (long long)root->left->val; res = max(res, val); } if (root->right != NULL) { long long val = (long long)(sum - root->right->val) * (long long)root->right->val; res = max(res, val); } } } int maxProduct(TreeNode* root) { long long res = 0; if (root == NULL) { return 0; } calSum(root); getMax(root, root->val, res); return res % mod; }};
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~