《数论概论》读书笔记 第三章勾股数组与单位圆

网友投稿 689 2022-10-02

《数论概论》读书笔记 第三章勾股数组与单位圆

《数论概论》读书笔记 第三章勾股数组与单位圆

本章讲的是勾股数组与单位圆的关系,讲关于勾股数的公式可以通过几何形式来推出。

定理3.1:

圆x2+y2=1上的坐标是有理数的点都可以由公式: (x,y)=(1−m21+m2,2m1+m2)得到,其中m取有理数值.(点(−1,0)例外,这个当m→∞时的极限值 )。

习题解析: 1.(a)如果u和v有公因数,假设d|u且d|v,那么显然会有d|a,d|b,d|c,所以(a,b,c)不是本原勾股数组。 (b)是否存在u和v没有公因数(u>0,v>0),但是该三元组(u2−v2,2uv,u2+v2)不是本原的。如果要让d|a,d|b,d|c,又要让d不被u或v整除,那么只有让d=2,v和u是奇数,那么显然a和c是偶数,2uv也是偶数,例如(6,8,10),此时u=3,v=1.(c)自己打表。 (d)打表可以发现,当u和v互质且u和v一奇一偶时,(a,b,c)是本原的。 (e)证明:u=2k+1,v=2tu2+v2=4k2+4k+1+4t22uv=2∗2t(2k+1)u2−v2=4k2+4k+1−4t2 反证: 设(u2−v2,2uv,u2−v2)不是本原的,即存在d d!=1且d不能整除u或vd|(4k2+4k+1+4t2)..................1d|2∗2t(2k+1).........................2d|(4k2+4k+1−4t2)...................3 如果d来自2,那么显然与1式和3式矛盾。 如果d来自2t,那么d不整除u,与1式和3式矛盾。 同理如果d来自(2k+1),与1式和3式矛盾 所以当u和v一奇一偶且互质时,(u2−v2,2uv,u2−v2)才是本原的。

2. (a)(v2−2uv−u2u2+v2,u2−2uv+v2u2+v2) (b)如果用相同的方法求圆x2+y2=3上所有坐标为有理数的点,那么会发现没有一个坐标为有理数值点能够作为基准点,也就是不能找到能起到像x2+y2=2中的点(1,1),x2+y2=1中的点(−1,0)这种作用的点。

3.答案:(u2+v2u2−v2,2uvu2−v2)。 用双曲线的方法也能推出勾股数组的通项公式,这是因为把公式变形为(ca)2−(ba)2=1,就可以用双曲线求解了。得到这个答案后将分母约去,就可以求出a了。

4.对于y2=x3+8 上有2个点为:(1,−3),(−74,138)。 第三个解为:(433121,97651331),这个是有理数吗?….翻译有错吧….

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:微信小程序 绝对路径 require
下一篇:微信小程序中使用echarts(微信小程序中使用signal)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~