洞察探讨小游戏SDK接入的最佳实践以及对企业跨平台开发的优势
936
2022-09-30
原文翻译:深度学习测试题(L1 W2 测试题)
导语
本文翻译自deeplearning.ai的深度学习课程测试作业,近期将逐步翻译完毕,一共五门课。
翻译:黄海广
本集翻译Lesson1 Week 2:
Lesson1 Neural Networks and Deep Learning (第一门课 神经网络和深度学习)
Week 2 Quiz - Neural Network Basics(第二周测验 - 神经网络基础)
1.What does a neuron compute?(神经元节点计算什么?)
【 】 A neuron computes an activation function followed by a linear function (z = Wx + b)(神经元节点先计算激活函数,再计算线性函数(z = Wx + b))
【★】 A neuron computes a linear function (z = Wx + b) followed by an activation function(神经元节点先计算线性函数(z = Wx + b),再计算激活。)
【 】 A neuron computes a function g that scales the input x linearly (Wx +b)(神经元节点计算函数g,函数g计算(Wx + b))
【 】 A neuron computes the mean of all features before applying the output to an activation function(在将输出应用于激活函数之前,神经元节点计算所有特征的平均值)
Note: The output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, …).(注:神经元的输出是a = g(Wx + b),其中g是激活函数(sigmoid,tanh,ReLU,…))
2. Which of these is the “Logistic Loss”?(下面哪一个是Logistic损失?)
【★】损失函数:
Note: We are using a cross-entropy loss function.(注:我们使用交叉熵损失函数。)
3. Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?(假设img是一个(32,32,3)数组,具有3个颜色通道:红色、绿色和蓝色的32x32像素的图像。如何将其重新转换为列向量?)
Answer(答):
x = img.reshape((32 * 32 * 3, 1))
4. Consider the two following random arrays “a” and “b”:(看一下下面的这两个随机数组“a”和“b”:)
a = np.random.randn(2, 3) # a.shape = (2, 3)b = np.random.randn(2, 1) # b.shape = (2, 1)c = a + b
What will be the shape of “c”?(请问数组c的维度是多少?)
Answer(答):
c.shape = (2, 3)
b (column vector) is copied 3 times so that it can be summed to each column of a. Therefore, c.shape = (2, 3).( B(列向量)复制3次,以便它可以和A的每一列相加,所以:c.shape = (2, 3))
5. Consider the two following random arrays “a” and “b”:(看一下下面的这两个随机数组“a”和“b”)
a = np.random.randn(4, 3) # a.shape = (4, 3)b = np.random.randn(3, 2) # b.shape = (3, 2)c = a * b
What will be the shape of “c”?(请问数组“c”的维度是多少?)
Answer(答):
The computation cannot happen because the sizes don’t match. It’s going to be “error”!(无法进行计算,因为大小不匹配。将会报错!)
Note:“*” operator indicates element-wise multiplication. Element-wise multiplication requires same dimension between two matrices. It’s going to be an error.(注:运算符 “*” 说明了按元素乘法来相乘,但是元素乘法需要两个矩阵之间的维数相同,所以这将报错,无法计算。)
6. Suppose you have input features per example. Recall that . What is the dimension of X?(假设你的每一个样本有 个输入特征,想一下在 中,X的维度是多少?)
Answer(答):
Note: A stupid way to validate this is use the formulawhen , then we have(请注意:一个比较笨的方法是当 的时候,那么计算一下 ,所以我们就有:
7. Recall that np.dot(a,b) performs a matrix multiplication on a and b, whereas a*b performs an element-wise multiplication.(回想一下,np.dot(a,b)在a和b上执行矩阵乘法,而“a * b”执行元素方式的乘法。)Consider the two following random arrays “a” and “b”:(看一下下面的这两个随机数组“a”和“b”:)
a = np.random.randn(12288, 150) # a.shape = (12288, 150)b = np.random.randn(150, 45) # b.shape = (150, 45)c = np.dot(a, b)What is the shape of c?(请问c的维度是多少?)
Answer(答):
c.shape = (12288, 45), this is a simple matrix multiplication example.( c.shape = (12288, 45), 这是一个简单的矩阵乘法例子。)
8. Consider the following code snippet:(看一下下面的这个代码片段:)
# a.shape = (3,4)
# b.shape = (4,1)
for i in range(3): for j in range(4): c[i][j] = a[i][j] + b[j]
How do you vectorize this?(请问要怎么把它们向量化?)
Answer(答):
c = a + b.T
9. Consider the following code:(看一下下面的代码:)
a = np.random.randn(3, 3)b = np.random.randn(3, 1)c = a * b
What will be c?(请问c的维度会是多少?)
Answer(答):
c.shape = (3, 3)
This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape = (3, 3).(这将会使用广播机制,b会被复制三次,就会变成(3,3),再使用元素乘法。所以:c.shape = (3, 3).)
10. Consider the following computation graph,What is the output J.(看一下下面的计算图,J输出是什么:)
J = u + v - w= a * b + a * c - (b + c)= a * (b + c) - (b + c)= (a - 1) * (b + c)
Answer(答):
J=(a - 1) * (b + c)
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~