原文翻译:深度学习测试题(L1 W2 测试题)

网友投稿 936 2022-09-30

原文翻译:深度学习测试题(L1 W2 测试题)

原文翻译:深度学习测试题(L1 W2 测试题)

导语

本文翻译自deeplearning.ai的深度学习课程测试作业,近期将逐步翻译完毕,一共五门课。

翻译:黄海广

本集翻译Lesson1 Week 2:

Lesson1 Neural Networks and Deep Learning (第一门课 神经网络和深度学习)

Week 2 Quiz - Neural Network Basics(第二周测验 - 神经网络基础)

1.What does a neuron compute?(神经元节点计算什么?)

【 】 A neuron computes an activation function followed by a linear function (z = Wx + b)(神经元节点先计算激活函数,再计算线性函数(z = Wx + b))

【★】 A neuron computes a linear function (z = Wx + b) followed by an activation function(神经元节点先计算线性函数(z = Wx + b),再计算激活。)

【 】 A neuron computes a function g that scales the input x linearly (Wx +b)(神经元节点计算函数g,函数g计算(Wx + b))

【 】 A neuron computes the mean of all features before applying the output to an activation function(在将输出应用于激活函数之前,神经元节点计算所有特征的平均值)

Note: The output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, …).(注:神经元的输出是a = g(Wx + b),其中g是激活函数(sigmoid,tanh,ReLU,…))

2. Which of these is the “Logistic Loss”?(下面哪一个是Logistic损失?)

【★】损失函数:

Note: We are using a cross-entropy loss function.(注:我们使用交叉熵损失函数。)

3. Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?(假设img是一个(32,32,3)数组,具有3个颜色通道:红色、绿色和蓝色的32x32像素的图像。如何将其重新转换为列向量?)

Answer(答):

​​x = img.reshape((32 * 32 * 3, 1))​​

4. Consider the two following random arrays “a” and “b”:(看一下下面的这两个随机数组“a”和“b”:)

a = np.random.randn(2, 3) # a.shape = (2, 3)b = np.random.randn(2, 1) # b.shape = (2, 1)c = a + b

What will be the shape of “c”?(请问数组c的维度是多少?)

Answer(答):

c.shape = (2, 3)

b (column vector) is copied 3 times so that it can be summed to each column of a. Therefore, c.shape = (2, 3).( B(列向量)复制3次,以便它可以和A的每一列相加,所以:c.shape = (2, 3))

5. Consider the two following random arrays “a” and “b”:(看一下下面的这两个随机数组“a”和“b”)

a = np.random.randn(4, 3) # a.shape = (4, 3)b = np.random.randn(3, 2) # b.shape = (3, 2)c = a * b

What will be the shape of “c”?(请问数组“c”的维度是多少?)

Answer(答):

The computation cannot happen because the sizes don’t match. It’s going to be “error”!(无法进行计算,因为大小不匹配。将会报错!)

Note:“*” operator indicates element-wise multiplication. Element-wise multiplication requires same dimension between two matrices. It’s going to be an error.(注:运算符 “*” 说明了按元素乘法来相乘,但是元素乘法需要两个矩阵之间的维数相同,所以这将报错,无法计算。)

6. Suppose you have   input features per example. Recall that  . What is the dimension of X?(假设你的每一个样本有 个输入特征,想一下在  中,X的维度是多少?)

Answer(答):

Note: A stupid way to validate this is use the formulawhen , then we have(请注意:一个比较笨的方法是当 的时候,那么计算一下 ,所以我们就有:

7. Recall that np.dot(a,b) performs a matrix multiplication on a and b, whereas ​​a*b​​ performs an element-wise multiplication.(回想一下,np.dot(a,b)在a和b上执行矩阵乘法,而“a * b”执行元素方式的乘法。)Consider the two following random arrays “a” and “b”:(看一下下面的这两个随机数组“a”和“b”:)

​​a = np.random.randn(12288, 150) # a.shape = (12288, 150)​​​​b = np.random.randn(150, 45) # b.shape = (150, 45)​​​​c = np.dot(a, b)​​What is the shape of c?(请问c的维度是多少?)

Answer(答):

c.shape = (12288, 45), this is a simple matrix multiplication example.( c.shape = (12288, 45), 这是一个简单的矩阵乘法例子。)

8. Consider the following code snippet:(看一下下面的这个代码片段:)

​​# a.shape = (3,4)​​

​​# b.shape = (4,1)​​

for i in range(3): for j in range(4): c[i][j] = a[i][j] + b[j]

How do you vectorize this?(请问要怎么把它们向量化?)

Answer(答):

​​c = a + b.T​​

9. Consider the following code:(看一下下面的代码:)

a = np.random.randn(3, 3)b = np.random.randn(3, 1)c = a * b

What will be c?(请问c的维度会是多少?)

Answer(答):

​​c.shape = (3, 3)​​

This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so ​​c.shape = (3, 3)​​​.(这将会使用广播机制,b会被复制三次,就会变成(3,3),再使用元素乘法。所以:​​c.shape = (3, 3)​​.)

10. Consider the following computation graph,What is the output J.(看一下下面的计算图,J输出是什么:)

​​J = u + v - w​​​​= a * b + a * c - (b + c)​​​​= a * (b + c) - (b + c)​​​​= (a - 1) * (b + c)​​

Answer(答):

​​J=(a - 1) * (b + c)​​

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:从Windows 7转为使用Ubuntu 16.04
下一篇:小程序的工作原理你了解么(微信小程序开发原理)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~