轻量级前端框架助力开发者提升项目效率与性能
710
2022-09-26
重学前端 39 # CSS的动画和交互
说明
每天10分钟,重构你的前端知识体系专栏笔记。
一、介绍
这一节学习一下 CSS的动画和交互。
二、animation 属性
2.1、基本用法
@keyframes{ from {background: red;} to {background: yellow;}}div{ animation: mykf 5s infinite;}
2.2、六个部分
animation-name 动画的名称,是一个keyframes 类型的值animation-duration 动画的时长animation-timing-function 动画的时间曲线animation-delay 动画开始前的延迟animation-iteration-count 动画的播放次数animation-direction 动画的方向
三、transition 属性
3.1、四个部分
transition-property 要变换的属性transition-duration 变换的时长transition-timing-function 时间曲线transition-delay 延迟
3.2、组合
/* 定义transition达到各段曲线都不同的效果 */@keyframes { from { top: 0; transition:top ease} 50% { top: 30px;transition:top ease-in } 75% { top: 10px;transition:top ease-out } to { top: 0; transition:top linear}}
四、三次贝塞尔曲线
贝塞尔曲线是一种插值曲线,它描述了两个点之间差值来形成连续的曲线形状的规则。
K 次贝塞尔插值算法需要 k+1 个控制点,最简单的一次贝塞尔插值就是线性插值,将时间表示为 0 到 1 的区间;
4.1、一次贝塞尔插值公式
4.2、二次贝塞尔插值公式
4.3、三次贝塞尔插值公式
4.4、JavaScript版本的代码
翻译自webkit的C++代码,这个JavaScript版本的三次贝塞尔曲线可以用于实现跟CSS一模一样的动画
// 浏览器一般采用了数值算法function generate(p1x, p1y, p2x, p2y) { const ZERO_LIMIT = 1e-6; // Calculate the polynomial coefficients, // implicit first and last control points are (0,0) and (1,1). const ax = 3 * p1x - 3 * p2x + 1; const bx = 3 * p2x - 6 * p1x; const cx = 3 * p1x; const ay = 3 * p1y - 3 * p2y + 1; const by = 3 * p2y - 6 * p1y; const cy = 3 * p1y; function sampleCurveDerivativeX(t) { // `ax t^3 + bx t^2 + cx t' expanded using Horner 's rule. return (3 * ax * t + 2 * bx) * t + cx; } function sampleCurveX(t) { return ((ax * t + bx) * t + cx ) * t; } function sampleCurveY(t) { return ((ay * t + by) * t + cy ) * t; } // Given an x value, find a parametric value it came from. function solveCurveX(x) { var t2 = x; var derivative; var x2; // // First try a few iterations of Newton's method -- normally very fast. // for (let i = 0; i < 8; i++) { // f(t)-x=0 x2 = sampleCurveX(t2) - x; if (Math.abs(x2) < ZERO_LIMIT) { return t2; } derivative = sampleCurveDerivativeX(t2); // == 0, failure /* istanbul ignore if */ if (Math.abs(derivative) < ZERO_LIMIT) { break; } t2 -= x2 / derivative; } // Fall back to the bisection method for reliability. // bisection // var t1 = 1; /* istanbul ignore next */ var t0 = 0; /* istanbul ignore next */ t2 = x; /* istanbul ignore next */ while (t1 > t0) { x2 = sampleCurveX(t2) - x; if (Math.abs(x2) < ZERO_LIMIT) { return t2; } if (x2 > 0) { t1 = t2; } else { t0 = t2; } t2 = (t1 + t0) / 2; } // Failure return t2; } function solve(x) { return sampleCurveY(solveCurveX(x)); } return solve;}
五、贝塞尔曲线拟合
5.1、用于模拟抛物线
// 核心函数function generateCubicBezier (v, g, t){ var a = v / g; var b = t + v / g; return [[(a / 3 + (a + b) / 3 - a) / (b - a), (a * a / 3 + a * b * 2 / 3 - a * a) / (b * b - a * a)], [(b / 3 + (a + b) / 3 - a) / (b - a), (b * b / 3 + a * b * 2 / 3 - a * a) / (b * b - a * a)]];}function createBall() { var ball = document.createElement("div"); var t = Number(document.getElementById("t").value); var vx = Number(document.getElementById("vx").value); var vy = Number(document.getElementById("vy").value); var g = Number(document.getElementById("g").value); ball.className = "ball"; document.body.appendChild(ball) ball.style.transition = `left linear ${t}s, top cubic-bezier(${generateCubicBezier(vy, g, t)}) ${t}s`; setTimeout(function(){ ball.style.left = `${vx * t}px`; ball.style- = `${vy * t + 0.5 * g * t * t}px`; }, 100); setTimeout(function(){ document.body.removeChild(ball); }, t * 1000);}
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~