使用MMDetection训练自己的数据

网友投稿 1538 2022-09-25

使用MMDetection训练自己的数据集

使用MMDetection训练自己的数据集

github链接:​​OpenMMLab (github.com)​​官方文档:​​Prerequisites — MMDetection 2.15.1 documentation​​

MMDetection推荐大家最好还是在linux系统下使用,windows系统上使用起来属实bug太多

下面的教程将会教会大家如何使用MMDetection来训练一个自己的目标检测模型,MMDetection设计的非常nice,准备好数据之后,只需要稍微修改一下配置文件就能完成训练,大多数模型的配置文件在MMDetection都进行了提供,只需要继承这些配置文件并重写其中的一些参数即可。

安装MMDetection

首先,通过下面的命令检查你的nvcc和gcc的版本,其中nvcc是调用gpu的关键,gcc是编译代码的关键。

# Check nvcc version!nvcc -V# Check GCC version!gcc --version

你的电脑将会输出下列信息:

然后大家需要安装mmdetection,mmdetection是openmmlab提供的一个计算机视觉的目标检测组件,他还提供了语义分割,分类等多种计算机视觉组件库,这些组件库基本都依赖与mmcv,安装的时候一定要注意保持mmcv和组件库的版本匹配,比如下图是mmcv和mmdetection的匹配关系。

MMDetection version

MMCV version

master

mmcv-full>=1.3.8, <1.4.0

2.15.1

mmcv-full>=1.3.8, <1.4.0

2.15.0

mmcv-full>=1.3.8, <1.4.0

2.14.0

mmcv-full>=1.3.8, <1.4.0

2.13.0

mmcv-full>=1.3.3, <1.4.0

2.12.0

mmcv-full>=1.3.3, <1.4.0

2.11.0

mmcv-full>=1.2.4, <1.4.0

2.10.0

mmcv-full>=1.2.4, <1.4.0

2.9.0

mmcv-full>=1.2.4, <1.4.0

2.8.0

mmcv-full>=1.2.4, <1.4.0

2.7.0

mmcv-full>=1.1.5, <1.4.0

2.6.0

mmcv-full>=1.1.5, <1.4.0

2.5.0

mmcv-full>=1.1.5, <1.4.0

2.4.0

mmcv-full>=1.1.1, <1.4.0

2.3.0

mmcv-full==1.0.5

2.3.0rc0

mmcv-full>=1.0.2

2.2.1

mmcv==0.6.2

2.2.0

mmcv==0.6.2

2.1.0

mmcv>=0.5.9, <=0.6.1

2.0.0

mmcv>=0.5.1, <=0.5.8

如果你是jupyter的环境,你可以执行下面的命令完成安装。

# install dependencies: (use cu101 because colab has CUDA 10.1)!pip install -U torch==1.5.1+cu101 torchvision==0.6.1+cu101 -f install mmcv-full thus we could use CUDA operators!pip install mmcv-full# Install mmdetection!rm -rf mmdetection!git clone mmdetection!pip install -e .# install Pillow 7.0.0 back in order to avoid bug in colab!pip install Pillow==7.0.0

并执行下面的python代码来检查是否安装成功。

# Check Pytorch installationimport torch, torchvisionprint(torch.__version__, torch.cuda.is_available())# Check MMDetection installationimport mmdetprint(mmdet.__version__)# Check mmcv installationfrom mmcv.ops import get_compiling_cuda_version, get_compiler_versionprint(get_compiling_cuda_version())print(get_compiler_version())

如果安装成功之后,将会在你的命令行中输出下列的信息。

或者你可以通过下面的代码来使用他官方提供的maskrnn的模型。

!mkdir checkpoints!wget -c \ -O checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pthfrom mmdet.apis import inference_detector, init_detector, show_result_pyplot# Choose to use a config and initialize the detectorconfig = 'configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py'# Setup a checkpoint file to loadcheckpoint = 'checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'# initialize the detectormodel = init_detector(config, checkpoint, device='cuda:0')# Use the detector to do inferenceimg = 'demo/demo.jpg'result = inference_detector(model, img)# Let's plot the resultshow_result_pyplot(model, img, result, score_thr=0.3)

效果如下:

准备数据

官方文档:​​Tutorial 2: Customize Datasets — MMDetection 2.15.1 documentation​​

目标检测的数据大多数需要处理成voc或者coco的格式,其中voc的格式是xml文件,bbox是左上角和右下角的坐标,coco是一个json文件,bbox是左上角的坐标和宽高。下面我们将会使用一个小规模的kitti数据集来作为我们使用的数据集,-如下:

# download, decompress the data!wget kitti_tiny.zip >

数据集的格式如下:

# Check the directory structure of the tiny data# Install tree first!apt-get -q install tree!tree kitti_tiny# 数据集格式 images目录是是图片,labels目录下是标签,train和val分别记录了训练和验证使用到的数据

可以通过下面的代码来查看一下图片大致是什么样子的

# Let's take a look at the dataset imageimport mmcvimport matplotlib.pyplot as pltimg = mmcv.imread('kitti_tiny/training/image_2/000073.jpeg')plt.figure(figsize=(15, 10))plt.imshow(mmcv.bgr2rgb(img))plt.show()

训练模型

准备好数据之后,我们只需要修改我们的配置文件即可完成训练:

首先需要加载基本的配置文件,在​​configs​​目录下你可以找到这些配置文件,比如这里我们加载的是faster_rcnn的配置文件。

from mmcv import Configcfg = Config.fromfile('./configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py')

修改并将修改之后的配置文件保存,在后面推理的时候我们可以直接加载我们的配置文件。

from mmdet.apis import set_random_seed# Modify dataset type and pathcfg.dataset_type = 'KittiTinyDataset'cfg.data_root = 'kitti_tiny/'cfg.data.test.type = 'KittiTinyDataset'cfg.data.test.data_root = 'kitti_tiny/'cfg.data.test.ann_file = 'train.txt'cfg.data.test.img_prefix = 'training/image_2'cfg.data.train.type = 'KittiTinyDataset'cfg.data.train.data_root = 'kitti_tiny/'cfg.data.train.ann_file = 'train.txt'cfg.data.train.img_prefix = 'training/image_2'cfg.data.val.type = 'KittiTinyDataset'cfg.data.val.data_root = 'kitti_tiny/'cfg.data.val.ann_file = 'val.txt'cfg.data.val.img_prefix = 'training/image_2'# modify num classes of the model in box headcfg.model.roi_head.bbox_head.num_classes = 3# We can still use the pre-trained Mask RCNN model though we do not need to# use the mask branchcfg.load_from = 'checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'# Set up working dir to save files and logs.cfg.work_dir = './tutorial_exps'# The original learning rate (LR) is set for 8-GPU training.# We divide it by 8 since we only use one GPU.cfg.optimizer.lr = 0.02 / 8cfg.lr_config.warmup = Nonecfg.log_config.interval = 10# Change the evaluation metric since we use customized dataset.cfg.evaluation.metric = 'mAP'# We can set the evaluation interval to reduce the evaluation timescfg.evaluation.interval = 12# We can set the checkpoint saving interval to reduce the storage costcfg.checkpoint_config.interval = 12# Set seed thus the results are more reproduciblecfg.seed = 0set_random_seed(0, deterministic=False)cfg.gpu_ids = range(1)# We can initialize the logger for training and have a look# at the final config used for trainingprint(f'Config:\n{cfg.pretty_text}')# 保存模型的各种参数(一定要记得嗷)cfg.dump(F'{cfg.work_dir}/customformat_kitti.py')

然后训练就可以了

from mmdet.datasets import build_datasetfrom mmdet.models import build_detectorfrom mmdet.apis import train_detector# Build datasetdatasets = [build_dataset(cfg.data.train)]# Build the detectormodel = build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg'))# Add an attribute for visualization conveniencemodel.CLASSES = datasets[0].CLASSES# Create work_dirmmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))train_detector(model, datasets, cfg, distributed=False, validate=True)

经过漫长的训练,你将会得到下面的训练记录,并生成日志文件

?如何从训练日志中获取信息

从日志中,我们可以对训练过程有一个基本的了解,知道检测器的训练效果如何。

首先,加载在 ImageNet 上预训练的 ResNet-50 主干,这是一种常见做法,因为从头开始训练成本更高。日志显示除了 conv1.bias 之外,ResNet-50 主干的所有权重都被加载,它已合并到 conv.weights 中。

其次,由于我们使用的数据集很小,我们加载了一个 Mask R-CNN 模型并对其进行了微调以进行检测。因为我们实际使用的检测器是 Faster R-CNN,所以掩码分支中的权重,例如roi_head.mask_head,是源 state_dict 中的意外键,未加载。原始的 Mask R-CNN 在包含 80 个类的 COCO 数据集上进行训练,但 KITTI Tiny 数据集只有 3 个类。因此,用于分类的预训练Mask R-CNN的最后一个FC层具有不同的权重形状,未使用。

第三,训练后,检测器通过默认的 VOC 式评估进行评估。结果表明,检测器在 val 数据集上达到了 54.1 mAP,不错!

使用训练好的模型

如果你是jupyter的代码,你可以继续执行下列的文件来使用训练好的模型。

img = mmcv.imread('kitti_tiny/training/image_2/000068.jpeg')model.cfg = cfgresult = inference_detector(model, img)show_result_pyplot(model, img, result)

如果你是在pycharm等工具中完成的开发,可以参考这篇博客使用你的模型。

最后附上完整的训练代码

from mmcv import Configfrom mmdet.datasets import build_datasetfrom mmdet.models import build_detectorfrom mmdet.apis import train_detectorfrom mmdet.apis import set_random_seedimport os.path as ospimport mmcvimport numpy as npfrom mmdet.datasets.builder import DATASETSfrom mmdet.datasets.custom import CustomDatasetimport warningswarnings.filterwarnings('ignore')@DATASETS.register_module()class KittiTinyDataset(CustomDataset): CLASSES = ('Car', 'Pedestrian', 'Cyclist') def load_annotations(self, ann_file): cat2label = {k: i for i, k in enumerate(self.CLASSES)} # load image list from file image_list = mmcv.list_from_file(self.ann_file) data_infos = [] # convert annotations to middle format for image_id in image_list: filename = f'{self.img_prefix}/{image_id}.jpeg' image = mmcv.imread(filename) height, width = image.shape[:2] data_info = dict(filename=f'{image_id}.jpeg', width=width, height=height) # load annotations label_prefix = self.img_prefix.replace('image_2', 'label_2') lines = mmcv.list_from_file(osp.join(label_prefix, f'{image_id}.txt')) content = [line.strip().split(' ') for line in lines] bbox_names = [x[0] for x in content] bboxes = [[float(info) for info in x[4:8]] for x in content] gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_labels_ignore = [] # filter 'DontCare' for bbox_name, bbox in zip(bbox_names, bboxes): if bbox_name in cat2label: gt_labels.append(cat2label[bbox_name]) gt_bboxes.append(bbox) else: gt_labels_ignore.append(-1) gt_bboxes_ignore.append(bbox) data_anno = dict( bboxes=np.array(gt_bboxes, dtype=np.float32).reshape(-1, 4), labels=np.array(gt_labels, dtype=np.long), bboxes_ignore=np.array(gt_bboxes_ignore, dtype=np.float32).reshape(-1, 4), labels_ignore=np.array(gt_labels_ignore, dtype=np.long)) data_info.update(ann=data_anno) data_infos.append(data_info) return data_infoscfg = Config.fromfile('./configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py')# Modify dataset type and pathcfg.dataset_type = 'KittiTinyDataset'cfg.data_root = 'data/kitti_tiny/'cfg.data.test.type = 'KittiTinyDataset'cfg.data.test.data_root = 'data/kitti_tiny/'cfg.data.test.ann_file = 'train.txt'cfg.data.test.img_prefix = 'training/image_2'cfg.data.train.type = 'KittiTinyDataset'cfg.data.train.data_root = 'data/kitti_tiny/'cfg.data.train.ann_file = 'train.txt'cfg.data.train.img_prefix = 'training/image_2'cfg.data.val.type = 'KittiTinyDataset'cfg.data.val.data_root = 'data/kitti_tiny/'cfg.data.val.ann_file = 'val.txt'cfg.data.val.img_prefix = 'training/image_2'# modify num classes of the model in box headcfg.model.roi_head.bbox_head.num_classes = 3# We can still use the pre-trained Mask RCNN model though we do not need to# use the mask branchcfg.load_from = 'checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'# Set up working dir to save files and logs.cfg.work_dir = './tutorial_exps'# The original learning rate (LR) is set for 8-GPU training.# We divide it by 8 since we only use one GPU.cfg.optimizer.lr = 0.02 / 8cfg.lr_config.warmup = Nonecfg.log_config.interval = 10# Change the evaluation metric since we use customized dataset.cfg.evaluation.metric = 'mAP'# We can set the evaluation interval to reduce the evaluation timescfg.evaluation.interval = 12# We can set the checkpoint saving interval to reduce the storage costcfg.checkpoint_config.interval = 12# Set seed thus the results are more reproduciblecfg.seed = 0set_random_seed(0, deterministic=False)cfg.gpu_ids = range(1)# We can initialize the logger for training and have a look# at the final config used for trainingprint(f'Config:\n{cfg.pretty_text}')# 保存模型的各种参数(一定要记得嗷)cfg.dump(F'{cfg.work_dir}/customformat_kitti.py')# 训练主要进程# Build datasetdatasets = [build_dataset(cfg.data.train)]# Build the detectormodel = build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg'))# Add an attribute for visualization conveniencemodel.CLASSES = datasets[0].CLASSES# Create work_dirmmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))train_detector(model, datasets, cfg, distributed=False, validate=True)

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:用GDB调试程序(二)
下一篇:首席营销官:6万人砍价不成功?拼多多公关塌了!
相关文章

 发表评论

暂时没有评论,来抢沙发吧~